Archive

Archive for the ‘Office 365 Security’ Category

How to secure your hybrid work world with a Zero Trust approach

May 12th, 2021 No comments

We are operating in the most complex cybersecurity landscape we’ve ever seen. Sophisticated and determined attackers are the norm. And we all are preparing for the next great disruption—hybrid work.

Security has never been more important, and as I shared in another Security blog today, it’s clearer than ever that a Zero Trust approach, which basically means you have to assume breach, will be critical to success. We’ve been listening and working closely with our customers around the world and rapidly innovating to help you to secure and protect your organizations. Today, I’d like to share some of our latest updates across security, compliance, identity, and management in response to that feedback to help you in your Zero Trust journey.

Strengthening your Zero Trust approach across your environment

The hybrid work environment, with some users working remotely and others in group office settings, introduces more digital attack surfaces, complexity, and risk as perimeters are now increasingly fluid. As such, a Zero Trust strategy will be top of mind for many organizations because its principles—verify explicitly, grant least privileged access, and assume breach—help maintain security amid the IT complexity that comes with hybrid work.

Verify explicitly

One of the most important first steps in a Zero Trust journey is to establish strong authentication. As Bret Arsenault, Microsoft’s CISO would say, “Hackers don’t break in. They log in.” Regardless of length or complexity, passwords alone won’t protect your account in the majority of attacks. Monitoring logins for suspicious activity and limiting or blocking access until additional proof of identity is presented drastically reduces the chances of a breach. Modern multifactor authentication (MFA) doesn’t have to be complicated for the user. We recently announced passwordless authentication and Temporary Access Pass in Azure Active Directory (Azure AD), our cloud identity solution, to help customers strengthen their access controls and simplify the user experience.

Verifying explicitly requires the ability to make real-time access decisions based on all available information for any user trying to access any resource. For us, Azure AD Conditional Access is this real-time access policy engine, which looks at all the data and signals related to the user gaining access, and today we’re announcing powerful new features that give admins more granular access controls while making it easier to control a growing list of policies. The GPS-based named locations and filters for devices enable a new set of scenarios, such as restricting access from specific countries or regions based on GPS location and securing the use of devices from Surface Hubs to privileged access workstations.

Additionally, to empower security for all, you need to be able to verify explicitly for all. We are expanding granular adaptive access controls to all users with the general availability of Azure AD Conditional Access and Identity Protection for business-to-consumer (B2C) apps and users. And we’ve made it easier to manage all your new policies with new search, sort, and filter capabilities, as well as enhanced audit logs to track recent policy changes. You can learn more on the Azure Active Directory Identity blog.

We also believe that for comprehensive protection through Zero Trust, we need to have end-to-end integration across device management and identity. New today, we are announcing the preview of filters for devices in Microsoft Endpoint Manager. These unique integrated capabilities between Microsoft Endpoint Manager (which brings together Configuration Manager and Intune) and Azure AD Conditional Access create even more granular controls. With device filters, administrators can target policies and applications to users on specific devices. For example, you can assign a filter so that a policy restriction is only applied to Surface Pro devices. You can learn more in today’s Tech Community blog.

Healthy devices and unified device management across platforms continue to be anchors of Zero trust, and to help protect data from potential leakage on mobile devices; we are introducing new conditional launch settings with App Protection Policies in Microsoft Endpoint Manager. These controls can block access or wipe data based on conditions such as maximum OS version, jailbroken or rooted devices, or require Android devices to pass SafetyNet attestation.

In addition, we are making it easier for you to manage your devices, regardless of the operating system. First, you can configure Android Enterprise-enrolled devices with Azure AD shared device mode in Microsoft Endpoint Manager. This new capability is now generally available and provides a simplified and more secure experience on devices shared across multiple users. With single sign-in, single sign-out, and data clearing across applications, shared device mode increases privacy between users and reduces the number of steps a frontline worker needs to take to access their work apps.

Then to make it easier to manage and secure your Apple devices, we recently released a Microsoft Endpoint Manager preview of the Setup Assistant for iOS, iPadOS, and macOS automated device enrollment. Based on customer feedback, you can now allow users to start using their iPadOS device immediately after enrollment without waiting for the Company Portal to install on a locked-down device. You can also configure a Conditional Access policy to require multifactor authentication either during enrollment in the Setup Assistant or upon authentication in the Company Portal. Learn more about the administrator and user experiences for shared devices and Setup Assistance in this Tech Community blog.

Finally, we continue to invest in BitLocker, which helps you to protect data at rest. BitLocker now has several enhancements, such as comprehensive modern management with Microsoft Endpoint Manager, role-based access controls for BitLocker recovery passwords, recovery password search, and recovery password auditing. Check out our BitLocker series that explains how to manage BitLocker in Microsoft Endpoint Manager, such as enabling silent encryption.

Grant least privileged access

As we have entered into new hybrid work environments, businesses need to think about how they will proactively protect their organizations from the influx of new or “bring your own” (BYO) connected devices—or even new apps that have helped people to work in new ways. This new normal has exposed the most challenging cybersecurity landscape we’ve ever encountered, and the least privileged access ensures that only what must be shared is.

To help, we recently added the ability to discover and secure unmanaged endpoints and network devices to Microsoft Defender for Endpoint. Once network devices are discovered, security administrators will receive the latest security recommendations and vulnerabilities on them. Discovered endpoints (such as workstations, servers, and mobile devices) can be onboarded to Microsoft Defender for Endpoints, allowing all its deep protection capabilities. You can learn more in the Microsoft Security blog, Secure unmanaged devices with Microsoft Defender for Endpoint now.

The early detection of vulnerabilities and misconfiguration is critical to an organization’s overall security posture, and to prevent those weaknesses from being exploited. With our commitment to support multi-platform, the threat and vulnerability management capabilities in Microsoft Defender for Endpoint now also support Linux OS, giving organizations the ability to view discovered vulnerabilities, assess the latest security recommendations, and issue remediation tasks for Linux devices. With the addition of Linux, threat and vulnerability management now covers all major platforms, including Windows and macOS.

Assume breach

Comprehensive security that is multi-platform and multi-cloud with simplification front and center is going to be important for the “assume breach” approach. With that in mind, today we are announcing the general availability of the converged portal for Microsoft 365 Defender, which unifies and simplifies XDR capabilities for endpoints, email, and collaboration. For Azure Sentinel, we are announcing solutions, which is a simplified means to deploy connectors, detections, playbooks, and workloads for both first and third-party integrations, all together as one package. To simplify team communications in the Security Operations Center, we now have built-in integration of Microsoft Teams into Azure Sentinel, so now you can create a Teams call directly from an incident.

With threats continuing to get more sophisticated, it is important to have the latest AI and machine learning capabilities at hand to separate important incidents from noise. Customers using Azure Sentinel consistently tell us how useful it is when incidents we raise are closed directly in the product. This quarter, more than 92 percent of incidents produced by Azure Sentinel’s AI were reported as useful by security professionals, which is dramatically higher than industry standards and enables you to focus on what’s important. Today we are adding new anomaly detections, including User and Entity Behavioral Analytics (UEBA) to Azure Sentinel that are powered by configurable machine learning. These anomalies can be used to provide additional context while hunting or fused with incidents. What’s powerful is that you can configure the variables for the machine learning driven anomalies with just a few clicks to customize for your specific environment.

Today’s hybrid work environment spans multiple platforms, multiple clouds, and on-premises. We recently extended the multi-cloud support in Azure Defender to include not just servers and SQL but also Kubernetes, all using Azure Arc. Azure Security Center remains the only security portal from a cloud vendor with multi-cloud support, including Azure, Amazon Web Services, and Google Cloud Platform. Today we are announcing that we are extending protection to the application level with the preview of the SAP threat monitoring solution for Azure Sentinel. This supports SAP running in any cloud or on-premises and includes continuous monitoring of SAP with built-in detections and can be customized to your specific SAP environment. You can learn more about this and the rest of Azure Sentinel’s announcements in the Tech Community blog post.

Enabling a secure way to access cloud apps while protecting your resources in this hybrid work environment is critical. New enhancements to Microsoft Cloud App Security will help protect against recent cloud-based attack types by detecting suspicious app activity and data exfiltration attempts from cloud services. Over the next few weeks, the general availability of the integration between Microsoft Information Protection and Cloud App Security will also be available. This integrated information protection policy management from the Cloud App Security portal enables greater visibility, control, and protection for your sensitive data in the cloud.

With over 90 percent of threats surfacing through email, it’s critical that organizations can configure security tools in a way that works for their environment. Over time, settings can age, new attack scenarios develop, and new security controls are available, necessitating regular review, upkeep, modifications, and even removal of old configurations. We’ve been on a journey to make it easier for customers to understand configuration gaps in their environment with recently launched features like preset security policies, Configuration Analyzer, and override alerts in Microsoft Defender for Office 365. Essentially, when Microsoft is confident that an email contains malicious content, we will not deliver the message to users, regardless of tenant configuration. We also recently announced our Secure by Default capabilities that eliminate the risks posed by legacy configurations. You can learn more in today’s Tech Community blog post.

But “assuming breach” isn’t just about external threats—you also have to be thoughtful about protecting your organization from the inside out. We released new capabilities today in our Insider Risk Management solution to help you to address insider risk in a holistic, collaborative way. Today’s Tech Community blog has more details.

For investigations, eDiscovery is critical. Today we’re announcing that eDiscovery support for Microsoft Graph connectors will be available in Summer 2021 as a developer preview. With Microsoft Graph connectors, investigators can query across more than 130 systems—directly from Microsoft 365 and our partners. Use the same eDiscovery tools in Microsoft 365 to search for content in third-party systems connected to Microsoft Search as used to search for content in Microsoft 365 apps and services. You can learn more in today’s Tech Community blog post.

Your Zero Trust journey

In a risk landscape as complex as today’s, your adoption of a Zero Trust approach won’t happen overnight. It’s important to value progress over perfection and to enlist help when you need it. Microsoft and its partners are committed to helping you on this journey. To chart out your path, or assess your progress, enable a remote workforce by embracing Zero Trust security.

Thank you for being part of our community and doing your part to build a safer world.

Learn more about Microsoft Security

To learn more about Microsoft Security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post How to secure your hybrid work world with a Zero Trust approach appeared first on Microsoft Security.

A “quick wins” approach to securing Azure Active Directory and Office 365 and improving your security posture

December 17th, 2020 No comments

In the last post, we discussed Office 365 and how enabling certain features without understanding all the components can lead to a false sense of security. We demonstrated how implementing a break glass account, multi-factor authentication (MFA), and the removal of legacy authentication can help secure your users and point your organization’s security posture in the right direction. While implementing those controls is an excellent start to hardening your environment, it is just the beginning. Read that blog here.

Security is critical, and any way that we can expedite threat prevention is highly welcomed. What if there was a way to get into a more secure state quickly.  How much time would this give you back to focus your attention on other tasks like actual customers (user base, clients)?

Do you wish there was a quick approach for security configurations in Azure Active Directory (Azure AD) and Office 365? I know I do, and thankfully we have some options here, and they are Secure Score and security defaults. Many of our customers are not aware that these features exist, or if they are aware, they fail to take advantage of using them.

“This blog post will provide an overview of Microsoft Secure Score and security defaults—two features that are easy to utilize and can significantly improve your security in Azure AD and Office 365 configurations.” 

What is Microsoft Secure Score? I am glad you asked

Microsoft Secure Score is a measurement developed to help organizations understand where they are now and the steps needed to improve their security posture. Microsoft Secure Score summarizes the different security features and capabilities currently enabled and provides you with the ability to compare your Score with other companies like yours and identify recommendations for areas of improvement.

Microsoft Secure Score screen image

Figure 1: Microsoft Secure Score screen image

How does Secure Score help organizations?

Secure Score provides recommendations for protecting your organization from threats. Secure Score will:

  • Objectively measure your identity security posture.
  • Plan for security improvements.
  • Review the success of your improvements.
  • The Score can also reflect third-party solutions that have been implemented and have addressed recommended actions.
  • The Secure Score reflects new services, thus keeping you up to date with new features and security settings that should be reviewed and if action on your part.

How is the Score determined?

Secure Score compares your organization’s configuration against anonymous data from other organizations with similar features to your organization, such as company size. Each improvement action is worth ten points or less, and most are scored in a binary fashion. If you implement the improvement action, like require MFA for Global Administrators or create a new policy or turn on a specific setting, you get 100 percent of the points. For other improvement actions, points are given as a percentage of the total configuration.

For example, an improvement action states you get ten points by protecting all your users with multi-factor authentication. You only have 50 of 100 total users protected, so that you would get a partial score of five points.

Additionally, your score will drop if routine security tasks are not completed regularly or when security configurations are changed. It will provide directions to the security team about what has changed and the security implications of those changes.

What are security defaults?

Security defaults, a one-click method for enabling basic identity security in an organization, are pre-configured security settings that help defend organizations against frequent identity-related attacks, such as password spray, replay, and phishing. Some of the critical features of Security Defaults include:

  • Requiring all users to register for Azure AD Multi-Factor Authentication (MFA) using the Microsoft Authenticator app.
  • Requiring administrators to perform multi-factor authentication.
  • Blocking legacy authentication protocols.
  • Requiring users to perform multi-factor authentication when necessary.
  • Protecting privileged activities like access to the Azure portal.

When should you use security defaults?

It would be best if you used security defaults in the following cases:

  • If you want to increase the overall security posture and don’t know how or where to start, security defaults are for you.
  • If you are using the free tier of Azure Active Directory licensing, security defaults are for you.

How is the Score determined?

Microsoft Secure Score has recently added improvement actions to support security defaults in Azure Active Directory, making it easier to help protect your organization with pre-configured security settings for frequent attack vectors.

When you turn on security defaults, you will be awarded full points for the following improvement actions:

  • Ensure all users can complete multi-factor authentication for secure access (nine points).
  • Require MFA for administrative roles (ten points).
  • Enable policy to block legacy authentication (seven points).

Get Started with Microsoft Secure Score and security defaults

Microsoft organizes Secure Score improvement actions into groups to help you focus on what you need to address for your organization:

  • Identity (Azure AD accounts and roles).
  • Data (Microsoft Information Protection).
  • Device (Microsoft Defender ATP, known as Configuration score).
  • Application (email and cloud apps, including Office 365 and Microsoft Cloud App Security).
  • Infrastructure (no improvement actions for now).

Secure Score

  • Start by logging into your Secure Score.
  • View your scores and where you need to improve.
  • Export all recommendations for your organization and turn this into an attack plan.
  • Prioritize the recommendations you will implement over the next 30, 60, 90, and 180 days.
  • Pick the tasks that are priorities for your organization and work these into your change control processes.

Security defaults

  • Start by logging in to your  Azure portal as a security administrator, Conditional Access administrator, or global administrator.
  • Browse to Azure Active Directory, and then Properties.
  • Select Manage security defaults.
  • Set the Enable security defaults, then toggle to Yes.
  • Select Save.

Enabling security defaults

Figure 2:  Enabling security defaults

There are many security enhancements that keep coming to Microsoft’s Cloud stack, so be sure you check your secure Score weekly. As the days go by and new security settings appear, your secure Score will reflect these changes. It is critical to check back often to ensure you are addressing any further recommendations.

Bumps in the road

Microsoft Secure Score and security defaults are straight forward ways to evaluate and improve your Azure AD and Office 365 configurations’ security. Security defaults help implement industry recommended practices, while Microsoft Secure Score creates a hands-on interface that simplifies the ongoing process of security assessment and improvement.

Our upcoming blog will explore the necessary built-in Azure tooling and open-source options that an organization can employ during investigative scenarios.

To learn more about Microsoft Security solutions visit our website.  Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post A “quick wins” approach to securing Azure Active Directory and Office 365 and improving your security posture appeared first on Microsoft Security.

Why integrated phishing-attack training is reshaping cybersecurity—Microsoft Security

October 5th, 2020 No comments

Phishing is still one of the most significant risk vectors facing enterprises today. Innovative email security technology like Microsoft Defender for Office 365 stops a majority of phishing attacks before they hit user inboxes, but no technology in the world can prevent 100 percent of phishing attacks from hitting user inboxes. At that point in time, your employees become your defenders. They must be trained to recognize and report phishing attacks. But not all training is equally proficient.

This blog examines the current state of security awareness training, including how you can create an intelligent solution to detect, analyze, and remediate phishing risk. You’ll also learn about an upcoming event to help you get data-driven insights to compare your current phishing risk level against your peers.

A new reality for cybersecurity

The Chief Information Security Officer (CISO) at a modern enterprise must contend with a myriad of threats. The hybrid mix of legacy on-premises systems and cloud solutions, along with the proliferation of employee devices and shadows, means your security team needs a new and comprehensive view of phishing risk across the organization. Self-reported training completion metrics don’t provide insights into behavior changes or risk reduction, leading CISOs to distrust these metrics. Improvement in employee behavior becomes difficult to measure, leaving them anxious that employee behavior has improved at all.

Many information workers view security awareness training as a tedious interruption that detracts from productivity. Often when an employee is compromised during a simulated attack, they find the ensuing training to be punitive and navigate away from the training like nothing happened. Worse, simulations are often out-of-context and don’t make sense for the employee’s industry or function.

People-centric protection

Making secure behaviors a part of people’s daily habits requires a regular program of targeted education combined with realistic simulations. That means regular breach and attack simulations against endpoints, networks, and cloud security controls. Microsoft Defender for Office 365 now features simulations to help you detect and remediate phishing risks across your organization. Attack Simulation Training in Microsoft Defender for Office 365, delivered in partnership with Terranova Security, helps you gain visibility over organizational risk, the baseline against predicted compromise rates, and prioritize remediations. To learn more about this capability, watch the product launch at Microsoft Ignite 2020

Terranova Security employs a pedagogical approach to cybersecurity, including gamification and interactive sessions designed to engage users’ interest. The simulations are localized for employees around the world and follow the highest web content accessibility guidelines (WCAG) 2.1. You will be able to measure employee behavior changes and deploy an integrated, automated security awareness program built on three pillars of protection:

  • Simulate real threats: Detect vulnerabilities by using real lures (actual phishing emails) and templates, training employees on the most up-to-date threats. Administrators can automate and customize simulations, including payload attachment, user targeting, scheduling, and cleanup. Azure Active Directory (AAD) groups automate user importing, and the vast library of training content enables personalized training based on a user’s vulnerability score or simulation performance.
  • Remediate intelligently: Quantify your social engineering risk across employees and threat vectors to accurately target remedial training. Measure the behavioral impact and track your organization’s progress against a baseline compromise rate. Set up automated repeat offender simulations with the user susceptibility metric and add context by correlating behavior with a susceptibility score.
  • Improve your security posture: Reinforce your human security system with hyper-targeted training designed to change employee Attack Simulation Training in Microsoft Defender for Office 365 provides nano learnings and micro learnings” to cater to diverse learning styles to reinforce awareness.

Check your threat level

Coinciding with National Cyber Security Awareness Month (NCSAM),  Terranova will release the results at the end of October from their the Terranova Security Gone Phishing Tournament™. This popular event helps security leaders get an up-to-the-minute picture of their organization’s phishing click rate. Terranova launched this campaign back in August and supplied a free phishing simulation for its applicants and enabled them to benchmark themselves against their peers, giving them accurate click-rate data for comparison.

Co-sponsored by Microsoft, the Terranova Security Gone Phishing Tournament uses an email template from Attack simulation training—a new capability of Office 365 ATP releasing later this year—that acts as an intelligent social engineering risk management tool using context-aware simulations and targeted training.

To learn more about Microsoft Security solutions, visit our website.  Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Why integrated phishing-attack training is reshaping cybersecurity—Microsoft Security appeared first on Microsoft Security.

STRONTIUM: Detecting new patterns in credential harvesting

September 10th, 2020 No comments

Microsoft has tied STRONTIUM to a newly uncovered pattern of Office365 credential harvesting activity aimed at US and UK organizations directly involved in political elections. Analysts from Microsoft Threat Intelligence Center (MSTIC) and Microsoft Identity Security have been tracking this new activity since April 2020. Credential harvesting is a known tactic used by STRONTIUM to obtain valid credentials that enable future surveillance or intrusion operations. Subsequent analysis revealed that between September 2019 and June 2020, STRONTIUM launched credential harvesting attacks against tens of thousands of accounts at more than 200 organizations. In the two weeks between August 18 and September 3, the same attacks targeted 6,912 accounts belonging to 28 organizations. None of these accounts were successfully compromised.

Not all the targeted organizations were election-related. However, we felt it important to highlight a potential emerging threat to the 2020 US Presidential Election and future electoral contests in the UK.

Microsoft CVP Customer Security and Trust, Tom Burt provided some additional details on this campaign in his recent On The Issues blog post. The purpose of this post is to provide defenders in any organization, but especially those directly or indirectly affiliated with electoral systems, insight into the technical nature of this activity. By providing these details, we hope to enable better defense against future attacks and share best practices for securing cloud environments against this type of activity.

Tactical Details

STRONTIUM relied heavily upon spear phishing in its credential harvesting efforts leading up to the 2016 US presidential election. In 2016, spear-phishing was the most common tactic for stealing credentials from targeted accounts. This time around, STRONTIUM appears to be taking a different approach, namely, brute-force/password-spray tooling. This shift in tactics, also made by several other nation-state actors, allows them to execute large-scale credential harvesting operations in a more anonymized manner. The tooling STRONTIUM is using routes its authentication attempts through a pool of approximately 1,100 IPs, the majority associated with the Tor anonymizing service. This pool of infrastructure has evolved over time, with an average of approximately 20 IPs added and removed from it per day. STRONTIUM’s tooling alternates its authentication attempts amongst this pool of IPs approximately once per second. Considering the breadth and speed of this technique, it seems likely that STRONTIUM has adapted its tooling to use an anonymizer service to obfuscate its activity, evade tracking, and avoid attribution.

During the two-week period, August 19 – September 3, STRONTIUM’s credential harvesting tooling utilized a daily average of 1,294 IPs associated with 536 netblocks and 273 ASNs. Of these netblocks, some were much more heavily utilized by the tooling than others, both in terms of the total number of authentications attempted from them and the total number of IPs utilized within them. Figure 1 below represents the 5 netblocks from which the highest number of total auth attempts were observed. As highlighted in the table, several of these netblocks had much higher IP utilization rates than the rest. This observed behavior indicates that the underlying anonymization services providing the infrastructure backbone for STRONTIUM auth attempts are, in a sense, over-serving IPs in these specific netblocks.

Figure 1: Highest volume netblocks used in STRONTIUM auth attempts.

Figure 1: Highest volume netblocks used in STRONTIUM auth attempts.

The fact that the anonymization service is over-serving specific netblocks gives defenders an opportunity to hunt for activity associated both with this STRONTIUM activity or other malicious tooling that is utilizing the same anonymization service. The following Azure Sentinel query (GitHub link) is designed to identify failed authentication attempts from the three highest-signal, highest-utilization netblocks highlighted above, and group the results by UserAgent.

An image of code.

Microsoft Threat Protection (MTP) also provides a platform for users to identify failed authentication attempts. The following query will give MTP users the ability to hunt and address these threats as well:

An image of code. MSTIC has observed that the STRONTIUM tooling operates in two modes when targeting accounts: brute-force and password-spray.

In password-spray mode, the tooling attempts username: password combinations in a ‘low-‘n-slow’ manner. Organizations targeted by the tooling running in this mode typically see approximately four authentication attempts per hour per targeted account over the course of several days or weeks, with nearly every attempt originating from a different IP address.

In brute-force mode, the tooling attempts many username: password attempts very rapidly for a much shorter time period. Organizations targeted by the tooling running in this mode typically see over 300 authentication attempts per hour per targeted account over the course of several hours or days.

Tooling Operating Mode Avg ## of Attempts Per Account Per Hour Avg # Of IPs Utilized for Auth Attempts Per Account Per Hour Avg Length of Attack
Password-Spray 4 4 Days-Weeks
Brute-Force 335 200 Hours-Days

Organizations targeted by STRONTIUM using this tooling saw auth attempts against an average of 20% of their total accounts. In some instances, MSTIC assesses the tooling may have discovered these accounts simply by attempting authentications against a large number of possible account names until it found ones that were valid.

Guidance: Proactive defense 

There are some very simple steps businesses and targeted individuals can take to significantly improve the security of their accounts and make these types of attacks much more difficult.

1. Enable multi-factor authentication

We have seen clear proof that enabling multi-factor authentication (MFA) across both business and personal email accounts successfully thwarts the majority of credential harvesting attacks. Our colleagues in Azure Active Directory put it more precisely—

“… doing any form of MFA takes you out of reach of most attacks. MFA (using any mechanism) is just too costly to break – unless a highly motivated attacker is after that high-value account or asset.”

However, most enterprise accounts have not implemented this simple protection:

“When we evaluate all the tokens issued with MFA claims, we see that less than 10% of users use MFA per month in our enterprise accounts (and that includes on-premises and third-party MFA). Until MFA is more broadly adopted, there is little reason for attackers to evolve.”

2. Actively monitor failed authentications

When monitoring login activity in your accounts, look for any type of discernable patterns in these failed authentications and track them over time. Password spray is an increasingly common tactic of nation-state actors.

You can also maintain broader visibility into behavioral anomalies like failed login attempts by running detections and monitoring using Microsoft Cloud App Security (MCAS) which monitors user sessions for third-party cloud apps, including G-Suite, AWS, and Salesforce. The MCAS detection engine looks for anomalous user activity for indicators of compromise. One indicator, “multiple failed login attempts,” can be used to create a dynamic baseline per user, across the tenant, and alert on anomalous login behavior that may represent an active brute force or password spray attack.

Microsoft Threat Protection (MTP) can help to automatically track and rebuild the Incident view of all the compromised identities by password-spray leveraged later by the attacker to expand the breach to endpoint or cloud assets.

3. Test your organization’s resilience

Attack Simulator in Office 365 ATP lets you run realistic, but simulated phishing and password attack campaigns in your organization. Pick a password and then run the campaign against as many users as you want. The results will let you know how many people are using that password. Use the data to train users and build your custom list of banned passwords.

The post STRONTIUM: Detecting new patterns in credential harvesting appeared first on Microsoft Security.

Alternative ways for security professionals and IT to achieve modern security controls in today’s unique remote work scenarios

March 26th, 2020 No comments

With the bulk of end users now working remotely, legacy network architectures that route all remote traffic through a central corporate network are suddenly under enormous strain. The result can be poorer performance, productivity, and user experience. Many organizations are now rethinking their network infrastructure design to address these issues, especially for applications like Microsoft Teams and Office 365. At Microsoft, for example, we adopted split tunneling as part of our VPN strategy. Our customers have asked us for guidance on how to manage security in this changing environment.

An architecture that routes all remote traffic back to the corporate network was originally intended to provide the security team with the following:

  • Prevention of unauthorized access
  • Control of authorized user access
  • Network protections such as Intrusion Detection/Prevention (IDS/IPS) and Distributed Denial of Service (DDoS) mitigation
  • Data loss prevention (DLP)

In this post, we’ll address alternative ways of achieving modern security controls, so security teams can manage risk in a more direct-to-internet network architecture.

Prevention of unauthorized access

Multi-factor authentication (MFA) helps increase authentication assurance. We recommend requiring it for all users. If you are not ready to deploy to all users, consider entering an emergency pilot for higher risk or more targeted users. Learn more about how to use Azure Active Directory (Azure AD) Conditional Access to enforce MFA. You will also want to block legacy authentication protocols that allow users to bypass MFA requirements.

Control of authorized user access

Ensure only registered devices that comply with your organization’s security policies can access your environment, to reduce the risk that would be posed by resident malware or intruders. Learn more about how to use Azure AD Conditional Access to enforce device health requirements. To further increase your level of assurance, you can evaluate user and sign-on risk to block or restrict risky user access. You may also want to prevent your users from accessing other organizations’ instances of the Office 365 applications. If you do this with Azure AD tenant restrictions, only logon traffic needs to traverse the VPN.

Network protections

Some of the protections that you may have traditionally provided by routing traffic back through your corporate network can now be provided by the cloud apps your users are accessing. Office 365, for example, is globally distributed and designed to allow the customer network to route user requests to the closest Office 365 service entry point. Learn more about Office 365 network connectivity principles. We build resiliency into Office 365 to minimize potential disruption. We protect Office 365 and Azure from network attacks like DDoS on behalf of our customers.

With the above controls in place, you may be ready to route remote users’ traffic directly to Office 365. If you still require a VPN link for access to other applications, you can greatly improve your performance and user experience by implementing split tunneling.

We strongly recommend that you review VPN and VPS infrastructure for updates, as attackers are actively tailoring exploits to take advantage of remote workers. Microsoft Threat Intelligence teams have observed multiple nation state and cybercrime actors targeting unpatched VPN systems for many months. In October 2019, both the National Security Agency and National Cyber Security Centre issued alerts on these attacks. The Department of Homeland Security Cybersecurity and Infrastructure Security Agency (CISA) and Department of Commerce National Institute of Standards and Technology (NIST) have published useful guidance on securing VPN/VPS infrastructure.

DLP

To help you prevent the accidental disclosure of sensitive information, Office 365 has a rich set of built-in tools. You can use the built-in DLP capabilities of Teams and SharePoint to detect inappropriately stored or shared sensitive information. If part of your remote work strategy involves a bring-your-own-device (BYOD) policy, you can use Conditional Access App Control to prevent sensitive data from being downloaded to users’ personal devices.

Malware detection

By default, SharePoint Online automatically scans file uploads for known malware. Enable Exchange Online Protection to scan email messages for malware. If your Office 365 subscription includes Office 365 Advanced Threat Protection (ATP), enable it to provide advanced protection against malware. If your organization uses Microsoft Defender ATP for endpoint protection, remember that each user is licensed for up to five company-managed devices.

Additional resources

The post Alternative ways for security professionals and IT to achieve modern security controls in today’s unique remote work scenarios appeared first on Microsoft Security.

Protecting against coronavirus themed phishing attacks

March 20th, 2020 No comments

The world has changed in unprecedented ways in the last several weeks due to the coronavirus pandemic. While it has brought out the best in humanity in many ways, as with any crisis it can also attract the worst in some. Cybercriminals use people’s fear and need for information in phishing attacks to steal sensitive information or spread malware for profit. Even as some criminal groups claim they’ll stop attacking healthcare and nursing homes, the reality is they can’t fully control how malware spreads.

While phishing and other email attacks are indeed happening, the volume of malicious emails mentioning the coronavirus is very small. Still, customers are asking us what Microsoft is doing to help protect them from these types of attacks, and what they can do to better protect themselves. We thought this would be a useful time to recap how our automated detection and signal-sharing works to protect customers (with a specific recent example) as well as share some best practices you can use personally to stay safe from phishing attempts.

What Microsoft is doing

First, 91 percent of all cyberattacks start with email. That’s why the first line of defense is doing everything we can to block malicious emails from reaching you in the first place. A multi-layered defense system that includes machine learning, detonation, and signal-sharing is key in our ability to quickly find and shut down email attacks.

If any of these mechanisms detect a malicious email, URL, or attachment, the message is blocked and does not make its way to your inbox. All attachments and links are detonated (opened in isolated virtual machines). Machine learning, anomaly analyzers, and heuristics are used to detect malicious behavior. Human security analysts continuously evaluate user-submitted reports of suspicious mail to provide additional insights and train machine learning models.

Once a file or URL is identified as malicious, the information is shared with other services such as Microsoft Defender Advanced Threat Protection (ATP) to ensure endpoint detection benefits from email detection, and vice versa.

An interesting example of this in action occurred earlier this month, when an attacker launched a spear-phishing campaign that lasted less than 30 minutes.

Attackers crafted an email designed to look like a legitimate supply chain risk report for food coloring additives with an update based on disruptions due to coronavirus. The attachment, however, was malicious and delivered a sophisticated, multi-layer payload based on the Lokibot trojan (Trojan:Win32/Lokibot.GJ!MTB).

Screenshot of a phishing email about a coronavirus update.

Had this payload been successfully deployed, hackers could have used it to steal credentials for other systems—in this case FTP accounts and passwords—which could then be used for further attacks.

Only 135 customer tenants were targeted, with a spray of 2,047 malicious messages, but no customers were impacted by the attack. The Office 365 ATP detonation service, signal-sharing across services, and human analysts worked together to stop it.

And thanks to signal sharing across services, customers not using a Microsoft email service like Office 365, hosted Exchange, or Outlook.com, but using a Windows PC with Microsoft Defender enabled, were fully protected. When a user attempted to open the malicious attachment from their non-Microsoft email service, Microsoft Defender kicked in, querying its cloud-based machine learning models and found that the attachment was blocked based on a previous Office 365 ATP cloud detection. The attachment was prevented from executing on the PC and the customer was protected.

What you can do

While bad actors are attempting to capitalize on the COVID-19 crisis, they are using the same tactics they always do. You should be especially vigilant now to take steps to protect yourself.

Make sure your devices have the latest security updates installed and an antivirus or anti-malware service. For Windows 10 devices, Microsoft Defender Antivirus is a free built-in service enabled through Settings. Turn on cloud-delivered protection and automatic sample submission to enable artificial intelligence (AI) and machine learning to quickly identify and stop new and unknown threats.

Enable the protection features of your email service. If you have Office 365, you can learn about Exchange Online Protection here and Office 365 ATP here.

Use multi-factor authentication (MFA) on all your accounts. Most online services now provide a way to use your mobile device or other methods to protect your accounts in this way. Here’s information on how to use Microsoft Authenticator and other guidance on this approach.

MFA support is available as part of the Azure Active Directory (Azure AD) Free offering. Learn more here.

Educate yourself, friends, and colleagues on how to recognize phishing attempts and report suspected encounters. Here are some of the tell-tale signs.

  • Spelling and bad grammar. Cybercriminals are not known for their grammar and spelling. Professional companies or organizations usually have an editorial staff to ensure customers get high-quality, professional content. If an email message is fraught with errors, it is likely to be a scam.
  • Suspicious links. If you suspect that an email message is a scam, do not click on any links. One method of testing the legitimacy of a link is to rest your mouse—but not click—over the link to see if the address matches what was typed in the message. In the following example, resting the mouse on the link reveals the real web address in the box with the yellow background. Note that the string of IP address numbers looks nothing like the company’s web address.

  • Suspicious attachments. If you receive an email with an attachment from someone you don’t know, or an email from someone you do know but with an attachment you weren’t expecting, it may be a phishing attempt, so we recommend you do not open any attachments until you have verified their authenticity. Attackers use multiple techniques to try and trick recipients into trusting that an attached file is legitimate.
    • Do not trust the icon of the attachment.
    • Be wary of multiple file extensions, such as “pdf.exe” or “rar.exe” or “txt.hta”.
    • If in doubt, contact the person who sent you the message and ask them to confirm that the email and attachment are legitimate.
  • Threats. These types of emails cause a sense of panic or pressure to get you to respond quickly. For example, it may include a statement like “You must respond by end of day.” Or saying that you might face financial penalties if you don’t respond.
  • Spoofing. Spoofing emails appear to be connected to legitimate websites or companies but take you to phony scam sites or display legitimate-looking pop-up windows.
  • Altered web addresses. A form of spoofing where web addresses that closely resemble the names of well-known companies, but are slightly altered; for example, “www.micorsoft.com” or “www.mircosoft.com”.
  • Incorrect salutation of your name.
  • Mismatches. The link text and the URL are different from one another; or the sender’s name, signature, and URL are different.

If you think you’ve received a phishing email or followed a link in an email that has taken you to a suspicious website, there are few ways to report what you’ve found.

If you think the mail you’ve received is suspicious:

  • Outlook.com. If you receive a suspicious email message that asks for personal information, select the checkbox next to the message in your Outlook inbox. Select the arrow next to Junk, and then point to Phishing scam.
  • Microsoft Office Outlook 2016 and 2019 and Microsoft Office 365. While in the suspicious message, select Report message in the Protection tab on the ribbon, and then select Phishing.

If you’re on a suspicious website:

  • Microsoft Edge. While you’re on a suspicious site, select the More (…) icon > Send feedback > Report Unsafe site. Follow the instructions on the web page that displays to report the website.
  • Internet Explorer. While you’re on a suspicious site, select the gear icon, point to Safety, and then select Report Unsafe Website. Follow the instructions on the web page that displays to report the website.

If you think you have a suspicious file:

  • Submit the file for analysis.

This is just one area where our security teams at Microsoft are working to protect customers and we’ll share more in the coming weeks. For additional information and best practices for staying safe and productive through remote work, community support and education during these challenging times, visit Microsoft’s COVID-19 resources page for the latest information.

The post Protecting against coronavirus themed phishing attacks appeared first on Microsoft Security.

New Microsoft Security innovations and partnerships

February 20th, 2020 No comments

Today on the Official Microsoft Blog, Ann Johnson, Corporate Vice President of the Cybersecurity Solutions Group, shared how Microsoft is helping turn the tide in cybersecurity by putting artificial intelligence (AI) in the hands of defenders. She announced the general availability of Microsoft Threat Protection, new platforms supported by Microsoft Defender Advanced Threat Protection (ATP), new capabilities in Azure Sentinel, and the general availability of Insider Risk Management in Microsoft 365.

Today, we’re also announcing:

  • An expanded public preview of FIDO2 security key support in Azure Active Directory (AD) to encompass hybrid environments. Workers can now sign in to work-owned Windows 10 devices with their Azure AD accounts using a FIDO2 security key instead of a password and automatically get single sign-on (SSO) to both on-premises and cloud resources.
  • New integration between Microsoft Cloud App Security and Microsoft Defender ATP that enables endpoint-based control of unsanctioned cloud applications. Administrators can now control the unauthorized use of cloud apps with protection built right into the endpoint.
  • Azure Security Center for IoT now supports a broader range of devices including Azure RTOS OS, Linux specifically Ubuntu and Debian, and Windows 10 IoT core. SecOps professionals can now reason over signals in an experience that combines IT and OT into a single view.
  • Two new features of Office 365 Advanced Threat Protection (ATP), campaign views and compromise detection and response, are now generally available. Campaign views gives security teams a complete view of email attack campaigns and makes it easier to address vulnerable users and configuration issues. Compromise detection and response speeds the detection of compromised users and is critical to ensuring that attacks are blocked early, and the impact of a breach is minimized.
  • In partnership with Terranova, we will offer customized user learning paths in Office 365 ATP later this year. User education needs to be part of every organization’s security strategy and we are investing to raise security awareness training efficacy.

These innovations are just a part of our commitment to built-in and cross-platform security that embraces AI and is deeply integrated together.

This integration also spans a broad ecosystem of security vendors to help solve for our customers’ security and compliance needs. We now have more than 100 members in the Microsoft Intelligent Security Association, including new members such as ServiceNow, Thales, and Trend Micro, and new IoT security solution providers like Attivo Networks, CyberMDX, CyberX, and Firedome to alleviate the integration challenges enterprises face.

To recognize outstanding efforts across the security ecosystem, on February 23, 2020—the night before the RSA Conference begins—we’ll host our inaugural security partner awards event, Microsoft Security 20/20, to celebrate our partners.

Good people, supported by AI and automation, have the advantage in the ongoing cybersecurity battle. That’s why we continue to innovate with new security and compliance solutions to help our customers in this challenge.

The post New Microsoft Security innovations and partnerships appeared first on Microsoft Security.

The quiet evolution of phishing

December 11th, 2019 No comments

The battle against phishing is a silent one: every day, Office 365 Advanced Threat Protection detects millions of distinct malicious URLs and email attachments. Every year, billions of phishing emails don’t ever reach mailboxes—real-world attacks foiled in real-time. Heuristics, detonation, and machine learning, enriched by signals from Microsoft Threat Protection services, provide dynamic, robust protection against email threats.

Phishers have been quietly retaliating, evolving their techniques to try and evade these protections. In 2019, we saw phishing attacks reach new levels of creativity and sophistication. Notably, these techniques involve the abuse of legitimate cloud services like those offered by Microsoft, Google, Amazon, and others. At Microsoft, we have aggressive processes to identify and take down nefarious uses of our services without affecting legitimate applications.

In this blog we’ll share three of the most notable attack techniques we spotted this year. We uncovered these attacks while studying Office 365 ATP signals, which we use to track and deeply understand attacker activity and build durable defenses against evolving and increasingly sophisticated email threats.

Hijacked search results lead to phishing

Over the years, phishers have become better at evading detection by hiding malicious artifacts behind benign ones. This tactic manifests in, among many others, the use of URLs that point to legitimate but compromised websites or multiple harmless-looking redirectors that eventually lead to phishing.

One clever phishing campaign we saw in 2019 used links to Google search results that were poisoned so that they pointed to an attacker-controlled page, which eventually redirected to a phishing page. A traffic generator ensured that the redirector page was the top result for certain keywords.

Figure 1. Phishing attack that used poisoned search results

Using this technique, phishers were able to send phishing emails that contained only legitimate URLs (i.e., link to search results), and a trusted domain at that, for example:

  • hxxps://www[.]google[.]ru/#btnI&q=%3Ca%3EhOJoXatrCPy%3C/a%3E
  • hxxps://www[.]google[.]ru/#btnI&q=%3Ca%3EyEg5xg1736iIgQVF%3C/a%3E

The campaign was made even stealthier by its use of location-specific search results. When accessed by users in Europe, the phishing URL led to the redirector website c77684gq[.]beget[.]tech, and eventually to the phishing page. Outside Europe, the same URL returned no search results.

For this to work, attackers had to make sure that their website, c77684gq[.]beget[.]tech, was the top search result for the keyword “hOJoXatrCPy” when queried from certain regions. The website’s HTML code is composed of a redirector script and a series of anchor elements:

Figure 2. Redirector code

These anchor elements were designed to be crawled by search engines so that the page is indexed and returned as result for the search keywords that attackers wanted to use for their campaign.

Figure 3. Anchor tags containing search keywords

The attackers then set up a traffic generator to poison search results. Because the phishing URL used the open redirector functionality, it redirected to the top search result, hence the redirector page.

404 Not Found pages customized to be phishing sites

The other way that phishers evade detection is to use multiple URLs and sometimes even multiple domains for their campaigns. They use techniques like subdomain generation algorithms to try and always get ahead of solutions, which, without the right dynamic technologies, will be forced continually catch up as phishers generate more and more domains and URLs.

This year, attackers have found another shrewd way to serve phishing: custom 404 pages. We uncovered a phishing campaign targeting Microsoft that used 404 pages crafted as phishing pages, which gave phishers virtually unlimited phishing URLs.

Figure 4. Phishing attack that uses specially crafted 404 Not Found error page

The custom 404 page was designed to look like the legitimate Microsoft account sign-in page.

Figure 5. 404 page designed as phishing page

Because the malformed 404 page is served to any non-existent URL in an attacker-controlled domain, the phishers could use random URLs for their campaigns. For example, we saw these two URLs used in phishing campaigns; the attackers added a single character to the second one to generate a new URL but serve the same phishing page:

  • hxxps://skype-online8024[.]web[.]app/8cc1083b0ffdf1e5b9594c045c825b02d41d8cd98f00b204e9800998ecf8427e#ZG1jY2FubkBtb3Jicm9zLmNvbQ
  • hxxps://skype-online8024[.]web[.]app/8cc1083b0ffdf1e5b9594c045c825b02d41d8cd98f00b204e9800998ecf8427e#ZG1jY2FubkBtb3Jicm9zLmNvbQs

We also found that the attackers randomized domains, exponentially increasing the number of phishing URLs:

  • outlookloffice365usertcph4l3q[.]web[.]app
  • outlookloffice365userdqz75j6h[.]web[.]app
  • outlookloffice365usery6ykxo07[.]web[.]app

All of these non-existent URLs returned the 404 error page, i.e., the phishing page:

Figure 6. When phishing URL is accessed, server responds with HTTP 404 error message, which is a phishing page

Man-in-the-middle component for dynamic phishing attack

Phishers have also been getting better at impersonation: the more legitimate the phishing emails looked, the better their chances at tricking recipients. Countless brands both big and small have been targets of spoofing by phishers.

One particular phishing campaign in 2019 took impersonation to the next level. Instead of attackers copying elements from the spoofed legitimate website, a man-in-the-middle component captured company-specific information like logos, banners, text, and background images from Microsoft’s rendering site.

Phishers sent out emails with URLs pointing to an attacker-controlled server, which served as the man-in-the-middle component and simulated Microsoft sign-in pages. The server identified certain specific information based on the recipient’s email address, including the target company, and then gathered the information specific to that company. The result was the exact same experience as the legitimate sign-page, which could significantly reduce suspicion.

Figure 7. Phishing attack that abuses Microsoft’s rendering site

Using the same URL, the phishing site was rendered differently for different targeted users. To generate legitimate-looking phishing sites, the server used the following code to retrieve the banner used by the target’s victim company as identified by the domain information in the email address; the response is the URL for the company banner:

Figure 8. Code snippet for requesting the banner

The server also retrieved the text used in the company’s sign-in page; the response is the actual text specific to the target victim’s company:

Figure 9. Code snippet for requesting the company-specific text

To complete the legitimate-looking phishing page, the server requested the background image using the code below; the response is the URL to the image:

Figure 10. Codes snippets for requesting background image

Office 365 ATP: Durable and dynamic defense for evolving email threats

The phishing techniques that we discussed in this blog are vastly different from each, but they are all clever attempts to achieve something that’s very important for phishers and other cybercrooks: stealth. The longer phishers can quietly hide from security solutions, the more chances they have to invade inboxes and trick people into divulging sensitive information.

To hunt down phishing and other threats that don’t want to be found, Office 365 ATP uses advanced security technologies that expose sophisticated techniques. Our URL detonation technology can follow the attack chain so it can detect threats even if they hide behind legitimate services and multiple layers of redirectors.

This rich visibility into email threats allows Office 365 ATP to continuously inform and improve its heuristic and machine learning protections so that new and emerging campaigns are blocked in real-time—silently protecting customers from attacks even when they don’t know it. The insights from Office 365 ATP also allow our security experts to track emerging techniques and other attacker activities like the ones we discussed in this blog, allowing us to ensure that our protections are effective not just for the campaigns that we see today but those that might emerge in the future.

In addition, with the new campaign views in Office 365 ATP currently in preview, enterprises can get a broad picture of email campaigns observed in their network, with details like when the campaign started, the sending pattern and timeline, the list of IP addresses and senders used in the attack, which messages were blocked or otherwise, and other important information.

As an important component of Microsoft Threat Protection, Office 365 ATP provides critical security signals about threat that arrive via email—a common entry point for cyberattacks—to the rest of Microsoft’s security technologies, helping provide crucial protection at the early stages of attacks. Through signal-sharing and remediation orchestration across security solutions, Microsoft Threat Protection provides comprehensive and integrated protection for identities, endpoints, user data, apps, and infrastructure.

 

Patrick Estavillo
Office 365 ATP Research Team

 

 

 


Read all Microsoft security intelligence blog posts.

Follow us on Twitter @MsftSecIntel.

The post The quiet evolution of phishing appeared first on Microsoft Security.

Top 6 email security best practices to protect against phishing attacks and business email compromise

October 16th, 2019 No comments

Most cyberattacks start over email—a user is tricked into opening a malicious attachment, or into clicking a malicious link and divulging credentials, or into responding with confidential data. Attackers dupe victims by using carefully crafted emails to build a false sense of trust and/or urgency. And they use a variety of techniques to do this—spoofing trusted domains or brands, impersonating known users, using previously compromised contacts to launch campaigns and/or using compelling but malicious content in the email. In the context of an organization or business, every user is a target and, if compromised, a conduit for a potential breach that could prove very costly.

Whether it’s sophisticated nation-state attacks, targeted phishing schemes, business email compromise or a ransomware attacks, such attacks are on the rise at an alarming rate and are also increasing in their sophistication. It is therefore imperative that every organization’s security strategy include a robust email security solution.

So, what should IT and security teams be looking for in a solution to protect all their users, from frontline workers to the C-suite? Here are 6 tips to ensure your organization has a strong email security posture:

You need a rich, adaptive protection solution.

As security solutions evolve, bad actors quickly adapt their methodologies to go undetected. Polymorphic attacks designed to evade common protection solutions are becoming increasingly common. Organizations therefore need solutions that focus on zero-day and targeted attacks in addition to known vectors. Purely standards based or known signature and reputation-based checks will not cut it.

Solutions that include rich detonation capabilities for files and URLs are necessary to catch payload-based attacks. Advanced machine learning models that look at the content and headers of emails as well as sending patterns and communication graphs are important to thwart a wide range of attack vectors including payload-less vectors such as business email compromise. Machine learning capabilities are greatly enhanced when the signal source feeding it is broad and rich; so, solutions that boast of a massive security signal base should be preferred. This also allows the solution to learn and adapt to changing attack strategies quickly which is especially important for a rapidly changing threat landscape.

Complexity breeds challenges. An easy-to-configure-and-maintain system reduces the chances of a breach.

Complicated email flows can introduce moving parts that are difficult to sustain. As an example, complex mail-routing flows to enable protections for internal email configurations can cause compliance and security challenges. Products that require unnecessary configuration bypasses to work can also cause security gaps. As an example, configurations that are put in place to guarantee delivery of certain type of emails (eg: simulation emails), are often poorly crafted and exploited by attackers.

Solutions that protect emails (external and internal emails) and offer value without needing complicated configurations or emails flows are a great benefit to organizations. In addition, look for solutions that offer easy ways to bridge the gap between the security teams and the messaging teams. Messaging teams, motivated by the desire to guarantee mail delivery, might create overly permissive bypass rules that impact security. The sooner these issues are caught the better for overall security. Solutions that offer insights to the security teams when this happens can greatly reduce the time taken to rectify such flaws thereby reducing the chances of a costly breach

A breach isn’t an “If”, it’s a “When.” Make sure you have post-delivery detection and remediation.

No solution is 100% effective on the prevention vector because attackers are always changing their techniques. Be skeptical of any claims that suggest otherwise. Taking an ‘assume breach’ mentality will ensure that the focus is not only on prevention, but on efficient detection and response as well. When an attack does go through the defenses it is important for security teams to quickly detect the breach, comprehensively identify any potential impact and effectively remediate the threat.

Solutions that offer playbooks to automatically investigate alerts, analyze the threat, assess the impact, and take (or recommend) actions for remediations are critical for effective and efficient response. In addition, security teams need a rich investigation and hunting experience to easily search the email corpus for specific indicators of compromise or other entities. Ensure that the solution allows security teams to hunt for threats and remove them easily.
Another critical component of effective response is ensuring that security teams have a good strong signal source into what end users are seeing coming through to their inbox. Having an effortless way for end users to report issues that automatically trigger security playbooks is key.

Your users are the target. You need a continuous model for improving user awareness and readiness.

An informed and aware workforce can dramatically reduce the number of occurrences of compromise from email-based attacks. Any protection strategy is incomplete without a focus on improving the level of awareness of end users.

A core component of this strategy is raising user awareness through Phish simulations, training them on things to look out for in suspicious emails to ensure they don’t fall prey to actual attacks. Another, often overlooked, but equally critical, component of this strategy, is ensuring that the everyday applications that end-users use are helping raise their awareness. Capabilities that offer users relevant cues, effortless ways to verify the validity of URLs and making it easy to report suspicious emails within the application — all without compromising productivity — are very important.

Solutions that offer Phish simulation capabilities are key. Look for deep email-client-application integrations that allow users to view the original URL behind any link regardless of any protection being applied. This helps users make informed decisions. In addition, having the ability to offer hints or tips to raise specific user awareness on a given email or site is also important. And, effortless ways to report suspicious emails that in turn trigger automated response workflows are critical as well.

Attackers meet users where they are. So must your security.

While email is the dominant attack vector, attackers and phishing attacks will go where users collaborate and communicate and keep their sensitive information. As forms of sharing, collaboration and communication other than email, have become popular, attacks that target these vectors are increasing as well. For this reason, it is important to ensure that an organization’s anti-Phish strategy not just focus on email.

Ensure that the solution offers targeted protection capabilities for collaboration services that your organization uses. Capabilities like detonation that scan suspicious documents and links when shared are critical to protect users from targeted attacks. The ability in client applications to verify links at time-of-click offers additional protection regardless of how the content is shared with them. Look for solutions that support this capability.

Attackers don’t think in silos. Neither can the defenses.

Attackers target the weakest link in an organization’s defenses. They look for an initial compromise to get in, and once inside will look for a variety of ways increase the scope and impact of the breach. They typically achieve this by trying to compromise other users, moving laterally within the organization, elevating privileges when possible, and the finally reaching a system or data repository of critical value. As they proliferate through the organization, they will touch different endpoints, identities, mailboxes and services.

Reducing the impact of such attacks requires quick detection and response. And that can only be achieved when the defenses across these systems do not act in silos. This is why it is critical to have an integrated view into security solutions. Look for an email security solution that integrates well across other security solutions such as endpoint protection, CASB, identity protection, etc. Look for richness in integration that goes beyond signal integration, but also in terms of detection and response flows.

 

 

The post Top 6 email security best practices to protect against phishing attacks and business email compromise appeared first on Microsoft Security.