Archive

Archive for the ‘phishing’ Category

The psychology of social engineering—the “soft” side of cybercrime

June 30th, 2020 No comments

Forty-eight percent of people will exchange their password for a piece of chocolate,[1] 91 percent of cyberattacks begin with a simple phish,[2] and two out of three people have experienced a tech support scam in the past 12 months.[3] What do all of these have in common? They make use of social engineering: when an attacker preys on our human nature in order to defraud. Also in common, these small, very human actions have led to billions of dollars of loss to global business.

People are by nature social. Our decision making is highly influenced by others. We are also overloaded with information and look to shortcuts to save time. This is why social engineering is so effective. In this blog, I’ll share the psychology behind Cialdini’s Six Principles of Persuasion to show how they help lure employees and customers into social engineering hacks. And I’ll provide some tips for using those principles to create a social engineering resistant culture.

Dr. Robert Cialdini is Regents’ Professor Emeritus of Psychology and Marketing at Arizona State University and founder of Influence at Work. He has spent his entire career studying what makes people say “Yes” to requests. From that research he developed Six Principles of Persuasion: Reciprocity, Scarcity, Authority, Consistency, Liking, and Consensus. So let’s take a look at how each of these principles is used in social engineering campaigns and how you can turn them around for good.

Reciprocity

People are inclined to be fair. In fact, receiving a gift triggers a neurological response in the areas of the brain associated with decision-making. If my friend buys me lunch on Friday, I will feel obliged to buy her lunch the next time we go out. Social psychologists have shown that if people receive a holiday card from a stranger, 20 percent will send one back.[4] And providing a mint at the end of a meal can increase tipping by 18-21 percent.

How reciprocity is used in phishing: You can see evidence of the Principle of Reciprocity in phishing campaigns and other scams. For example, an attacker may send an email that includes a free coupon and then ask the user to sign up for an account.

Leveraging reciprocity to reduce phishing: According to Dr. Cialdini, the lesson of “the Principle of Reciprocity is to be the first to give...” Many organizations pay for lunch to get people to come to trainings, but you may also consider giving away gift certificates for coffee or a fun T-shirt. If the gift is personal and unexpected, it’s even more effective. After you give, ask people to commit to your security principles. Many will feel compelled to do so.

Scarcity

Why do so many travel websites tell you when there are only a few remaining flights or rooms? The Principle of Scarcity. It’s human nature to place a higher value on something that is in limited supply. In one experiment, college students judged cookies more appealing if there were fewer in the jar.[5] Even more appealing? When an abundant supply of cookies was later reduced to scarcity.

How scarcity is used in phishing: Attackers take advantage of our desire for things that seem scarce by putting time limits on offers in emails. Or, in another common tactic, they tell people that their account will deactivate in 24 hours if they don’t click on a link to get it resolved.

Leveraging scarcity to reduce phishing: You can leverage scarcity to engage people in security behaviors too. For example, consider giving a prize to the first 100 people who enable multi-factor authentication.

Authority

People tend to follow the lead of credible experts. Doctors (think Dr. Fauci), teachers, bosses, and political leaders, among others, have huge sway over people’s actions and behaviors. If you’ve heard of the Milgram study,[6] you may be familiar with this concept. In that study an experimenter convinced volunteers to deliver increasingly more severe shocks to a “learner” who didn’t answer questions correctly. Fortunately, the learner was an actor who pretended to feel pain, when in reality there were no shocks delivered. However, it does show you how powerful the Principle of Authority is.

How authority is used in phishing: Using authority figures to trick users is very common and quite effective. Bad actors spoof the Chief Executive Officer (CEO) to demand that the Chief Financial Officer (CFO) wire money quickly in some spear phishing campaigns. When combined with urgency, people are often afraid to say no to their boss.

Leveraging authority to reduce phishing: You can use people’s natural trust of authority figures in your security program. For example, have senior managers make a statement about how important security is.

Consistency

Most people value integrity. We admire honesty and reliability in others, and we try to practice it in our own lives. This is what drives the Principle of Consistency. People are motivated to remain consistent with prior statements or actions. If I tell you that I value the outdoors, I won’t want to be caught throwing litter in a park. One study found that if you ask people to commit to environmentally friendly behavior when they check into a hotel, they will be 25 percent more likely to reuse their towel.[7]

How consistency is used in phishing: Scammers take advantage of people’s desire to be consistent by asking for something small in an initial email and then asking for more later.

Leveraging consistency to reduce phishing: One way to employ the Principle of Consistency in your security program is to ask staff to commit to security. Even more powerful? Have them do it in writing.

Liking

It probably won’t surprise you to learn that people are more likely to say yes to someone they like. If a friend asks for help, I want to say yes, but it’s easier to say no to stranger. But even a stranger can be persuasive if they are perceived as nice. In the raffle experiment, people were more likely to buy raffle tickets if the person selling the tickets brought them a soda, and less likely if the person only bought themselves a soda.[8]

How liking is used in phishing: When bad actors spoof or hack an individual’s email account and then send a phishing email to that person’s contacts, they are using the Principle of Liking. They are hoping that one of the hacking victim’s friends won’t spend much time scrutinizing the email content and will just act because the like the “sender.”

Leveraging liking to reduce phishing: To be more persuasive with your staff, cultivate an “internal consulting” mindset. Be friendly and build relationships, so that people want to say yes when you ask them to change their behavior.

Consensus

When people are uncertain, they look to others to help them formulate an opinion. Even when they are confident of their beliefs, consensus opinions can be very persuasive. This can be seen in the light dot experiment. In this study, individuals were asked how much a (stationary) dot of light was moving. It appeared to move due to autokinetic effect. Days later, the subjects were divided into groups. Despite very different earlier estimates, responses “normalized” to the broader group. If brought back to provide an individual estimate, individuals continued to provide the group estimate.[9]

How consensus is used in phishing: Adversaries exploit cultural trends. For example, when there is a natural disaster, there are often several illegitimate organizations posing as a charity to elicit donations.

Leveraging consensus to reduce phishing: Highlight positive security behaviors among other employees or report favorable statistics that indicate most people are complying with a security policy.

The more complex life becomes, the more likely humans will rely on cognitive shortcuts to make decisions. Educate your employees on how the Cialdini’s Six Principles of Persuasion can be used to trick them. Try implementing the principles in your own communication and training programs to improve compliance. Over time, you can build a culture that is less likely to fall for social engineering campaigns.

Watch “The psychology of social engineering: the soft side of cybercrime” presentation at InfoSec World v2020.

Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. Or reach out to me on LinkedIn or Twitter.

[1] Trick with treat – Reciprocity increases the willingness to communicate personal data, Happ, Melzer, Steffgen, https://dl.acm.org/citation.cfm?id=2950731
[2] 2016 Enterprise Phishing Susceptibility and Resiliency Report, https://phishme.com/enterprise-phishing-susceptibility-report
[3] Microsoft Global Survey on Tech Support Scams, https://mscorpmedia.azureedge.net/mscorpmedia/2016/10/Microsoft_Infographic_final.pdf
[4] Kunz, Phillip R; Woolcott, Michael (1976-09-01). “Season’s greetings: From my status to yours.” Social Science Research. 5 (3): 269–278
[5] Worchel, Stephen; Lee, Jerry; Adewole, Akanbi (1975). “Effects of supply and demand on ratings of object value.” Journal of Personality and Social Psychology. 32 (5): 906–914.
[6] Milgram, Stanley (1963). “Behavioral Study of Obedience.” Journal of Abnormal and Social Psychology. 67(4): 371–8.
[7] Commitment and Behavior Change: Evidence from the Field Katie Baca-Motes, Amber Brown, Ayelet Gneezy, Elizabeth A. Keenan, Leif D. Nelson Journal of Consumer Research, Volume 39, Issue 5, 1 February 2013, Pages 1070–1084
[8] Regan, Dennis T. (1971-11-01). “Effects of a favor and liking on compliance.” Journal of Experimental Social Psychology. 7 (6): 627–639.
[9] Sherif, M (1935). “A study of some social factors in perception.” Archives of Psychology. 27: 187.

The post The psychology of social engineering—the “soft” side of cybercrime appeared first on Microsoft Security.

Microsoft continues to extend security for all with mobile protection for Android

June 23rd, 2020 No comments

Just a year ago, we shared our first steps on a journey to enable our customers to protect endpoints running a variety of platforms with our announcement of Microsoft Defender ATP for Mac. Knowing that each of our customers have unique environments and unique needs and are looking for more unification in their security solutions, we communicated our commitment to build security solutions from Microsoft, not just for Microsoft. Since then, we’ve announced capabilities for Linux servers, and at RSA, and we offered you a sneak peek into our mobile threat defense investments.

Today, I’m proud to announce the public preview of Microsoft Defender ATP for Android.

Protecting mobile devices from evolving threats, phishing attacks, unwanted apps

As more business is getting done on mobile devices, the lines blur between work and personal life. The threats here are unique. For example, one of the biggest and fastest growing threats on mobile is phishing attacks, majority of which happen outside of email, such as via phishing sites, messaging apps, games, and other applications, and are tricky to spot on smaller form factors. Other common mobile threats include malicious applications that users are lured into downloading, as well as increased risk introduced by rooted devices that may allow unnecessary escalated privileges and the installation of unauthorized applications.

In this rapidly evolving world of mobile threats, Microsoft is taking a holistic approach to tackling these challenges and to securing enterprises and their data with our new mobile threat defense capabilities. We’re leveraging our unique visibility into the threat landscape and the vast signal, intelligence, and security expertise we have from across domains, such as our expertise in phishing and email, our endpoint threat research on malware and attacker techniques, and our focus on identity and zero trust to bring protection capabilities to mobile. Our integrated approach to security enables us to provide more complete coverage. Leveraging these capabilities, Microsoft Defender ATP for Android will help to protect our customers and their users by delivering:

  • Protection from phishing and access to risky domains and URLs through web protection capabilities that will block unsafe sites accessed through SMS/text, WhatsApp, email, browsers, and other apps. We’re using the same Microsoft Defender SmartScreen services that are on Windows to quickly detect malicious sites which means that a decision to block a suspicious site will apply across all devices in the enterprise.
  • Proactive scanning of malicious applications, files, and potentially unwanted applications (PUA) that users may download to their mobile devices. Our capabilities and investments in cloud-powered protection and intelligence on application reputation allow us to quickly detect sophisticated malware and apps that that may display undesirable behavior.
  • Adding layers of protection to help prevent and limit the impact of breaches in an organization. By leveraging tight integration with Microsoft Endpoint Manager and Conditional Access, mobile devices that have been compromised with malicious apps or malware are considered high risk and are blocked from accessing corporate resources.
  • A unified security experience through Microsoft Defender Security Center where defenders can see alerts and easily get the additional context they need to quickly assess and respond to threats across Windows, Mac, Linux, and now mobile devices.

There’s more to share on how these capabilities work and how to get started on the blog in the Microsoft Defender ATP tech community.

In the coming months we will be releasing additional capabilities on Android and you will hear more from us about our investments in mobile threat defense for iOS devices as well.

I’m also thrilled to share that our initial release of Microsoft Defender ATP for Linux is now generally available. Customers have asked us to broaden our selection of platforms natively supported by Microsoft Defender ATP, and today we’re excited to officially start our journey with Linux. This release marks an important moment for all Microsoft Defender ATP customers when Microsoft Defender ATP becomes a truly unified solution to secure the full spectrum of desktop and server platforms that are common across enterprise environments: Windows, macOS, and Linux.

We are committed to helping organizations secure their unique and heterogenous environments and we have so much more in store for you this year. We’re excited for you to join us in our journey as we continue to deliver the industry’s best in integrated threat protection solutions.

For more information on Microsoft Security Solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

 

-Rob

The post Microsoft continues to extend security for all with mobile protection for Android appeared first on Microsoft Security.

11 security tips to help stay safe in the COVID-19 era

June 9th, 2020 No comments

The COVID-19 pandemic has changed our daily routines, the ways we work, and our reliance on technology. Many of us are now working remotely, students are attending classes virtually, and we’re relying more on social media and social networks to stay connected as we define what our new normal looks like.

As we spend more time online, it’s important to remember that the basics of online safety have not changed. These guidelines provide a strong foundation for digital security, but as we think about the “new normal” and how the internet is woven into the fabric of our lives, extra steps may be necessary to further reduce risk.

So, in addition to the security policies implemented by your work or school, here are a few more practices we recommend you—and your family and friends—adopt to further increase personal cybersecurity resilience.

Keep devices secure and up to date

  1. Turn on automatic security updates, antivirus, and firewall. The reality of cyberthreats is that they often prey upon the devices that are the easiest to compromise: those without a firewall, without an antivirus service, or without the latest security updates. To reduce this risk, turn on automatic updates to ensure your devices have the latest security fixes, enable or install an antivirus solution that runs continuously, and configure a firewall. Modern computers have many of these features available and enabled by default, but it is a good idea to check all three are correctly set up.
  2. Don’t forget networking devices. Device safety includes your networking devices, too. As with computing devices, make sure that you check for and apply all updates for your networking devices. Many devices use default passwords, which means attackers have an easy list to try. Make sure to check your networking devices are not using default admin passwords or ones that are easily guessable (like your birthday). It’s also good hygiene to update your Wi-Fi credentials to strong passwords with a mix of upper- and lowercase letters as well as symbols and numbers.
  3. Use Wi-Fi encryption options for access. Wireless access points offer the ability to require passwords to gain access to the network. You should take advantage of this feature to ensure only authorized users are on your home network.

Secure your identity, guard your privacy

  1. Protect your digital identity. With more of our lives connected in the virtual realm, your digital identity becomes even more important to protect. Use strong passwords or, if possible, biometric authentication like your face or fingerprint, and wherever possible enable multi-factor authentication (MFA). Among others, Google and Microsoft both offer free MFA applications that are easy to set up and use.
  2. Keep your guard up in online chats and conferencing services. As we spend more time on virtual conferences and video calls, it is important to think about privacy. Consider these questions when trying new services:
    • Who can access or join the meeting/call?
    • Can it be recorded? If yes, do all participants know?
    • Are chats preserved and shared?
    • If there is file sharing, where are those files stored?
  3. Use background blur or images to obscure your location. One of the more popular features on video conferencing tools like Zoom, Skype, and Microsoft Teams is the ability to blur or change your background. This can be an important privacy step that you can take to maintain privacy between home and work environments.

Protect business data while at home

  1. Use the right file-sharing service for the right task. While working remotely, it’s easy for lines to blur between work and home. It’s important to ensure that your business data does not get mixed with your personal data. Remember to use business resources, like SharePoint or OneDrive for Business, to store and share content for work. Don’t use consumer offerings for business data while you are remote. Where possible, consider enabling Windows Information Protection to reduce the risk of unintentional (and intentional) enterprise data leakage via consumer services.
  2. Turn on device encryption. Device encryption ensures that data on your device is safe from unauthorized access should your device be stolen or lost.

Be aware of phishing and identity scams

Cybercriminals continue to exploit victims even through this global crisis. Based on what Microsoft has observed over the last two months, cybercriminals are utilizing new lures related to the coronavirus outbreak and are being indiscriminate in their targeting. As we move into this “new normal” of more virtual engagement, the same vigilance you kept at the office or classroom applies at home. Here are a couple of observed attack methods to keep top of mind:

  1. Identity compromise is still number one point of entry. Attackers are looking to steal your digital identity for monetization, spam, and access. Be on the lookout for unexpected websites and applications asking you to sign in with your credentials. The same goes for MFA requests. If you did not initiate the request, do not verify it. Report suspected sites and uninitiated authentication requests through your browser or applications.
  2. Phishing is still out there. Be wary of offers that are too good to be true, pressure time, or promise a free prize. These are the same bad guys from before, but now they’re using the outbreak and public fear to drive a different action. For more information on phishing attacks, read Protecting against coronavirus themed phishing attacks.
  3. Don’t fall victim to tech support scams. Tech support scams are an industry-wide issue where scammers use scare tactics to try and trick you into paying for unnecessary services that supposedly fix a device, operating system, or software problem. Please note that Microsoft will never contact you with an unsolicited offer to address a technical issue. And error and warning messages in Microsoft products never include a phone number to call. If you receive an unsolicited tech support call telling you there is something wrong with your computer—even if the caller offers to correct the issue for free—hang up and report the call to https://www.microsoft.com/reportascam. For more information on tech support scams, visit this page: https://support.microsoft.com/en-us/help/4013405/windows-protect-from-tech-support-scams.

With awareness and these few simple steps, you can better prepare yourself for this new world of secure remote work and social interaction. And as attackers evolve, we’ll be here to help you adapt and stay safe.

To learn more about Microsoft security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post 11 security tips to help stay safe in the COVID-19 era appeared first on Microsoft Security.

Open-sourcing new COVID-19 threat intelligence

May 14th, 2020 No comments

A global threat requires a global response. While the world faces the common threat of COVID-19, defenders are working overtime to protect users all over the globe from cybercriminals using COVID-19 as a lure to mount attacks. As a security intelligence community, we are stronger when we share information that offers a more complete view of attackers’ shifting techniques. This more complete view enables us all to be more proactive in protecting, detecting, and defending against attacks.

At Microsoft, our security products provide built-in protections against these and other threats, and we’ve published detailed guidance to help organizations combat current threats (Responding to COVID-19 together). Our threat experts are sharing examples of malicious lures and we have enabled guided hunting of COVID-themed threats using Azure Sentinel Notebooks. Microsoft processes trillions of signals each day across identities, endpoint, cloud, applications, and email, which provides visibility into a broad range of COVID-19-themed attacks, allowing us to detect, protect, and respond to them across our entire security stack. Today, we take our COVID-19 threat intelligence sharing a step further by making some of our own indicators available publicly for those that are not already protected by our solutions. Microsoft Threat Protection (MTP) customers are already protected against the threats identified by these indicators across endpoints with Microsoft Defender Advanced Threat Protection (ATP) and email with Office 365 ATP.

In addition, we are publishing these indicators for those not protected by Microsoft Threat Protection to raise awareness of attackers’ shift in techniques, how to spot them, and how to enable your own custom hunting. These indicators are now available in two ways. They are available in the Azure Sentinel GitHub and through the Microsoft Graph Security API. For enterprise customers who use MISP for storing and sharing threat intelligence, these indicators can easily be consumed via a MISP feed.

This threat intelligence is provided for use by the wider security community, as well as customers who would like to perform additional hunting, as we all defend against malicious actors seeking to exploit the COVID crisis.

This COVID-specific threat intelligence feed represents a start at sharing some of Microsoft’s COVID-related IOCs. We will continue to explore ways to improve the data over the duration of the crisis. While some threats and actors are still best defended more discreetly, we are committed to greater transparency and taking community feedback on what types of information is most useful to defenders in protecting against COVID-related threats. This is a time-limited feed. We are maintaining this feed through the peak of the outbreak to help organizations focus on recovery.

Protection in Azure Sentinel and Microsoft Threat Protection

Today’s release includes file hash indicators related to email-based attachments identified as malicious and attempting to trick users with COVID-19 or Coronavirus-themed lures. The guidance below provides instructions on how to access and integrate this feed in your own environment.

For Azure Sentinel customers, these indicators can be either be imported directly into Azure Sentinel using a Playbook or accessed directly from queries.

The Azure Sentinel Playbook that Microsoft has authored will continuously monitor and import these indicators directly into your Azure Sentinel ThreatIntelligenceIndicator table. This Playbook will match with your event data and generate security incidents when the built-in threat intelligence analytic templates detect activity associated to these indicators.

These indicators can also be accessed directly from Azure Sentinel queries as follows:

let covidIndicators = (externaldata(TimeGenerated:datetime, FileHashValue:string, FileHashType: string )
[@"https://raw.githubusercontent.com/Azure/Azure-Sentinel/master/Sample%20Data/Feeds/Microsoft.Covid19.Indicators.csv"]
with (format="csv"));
covidIndicators

Azure Sentinel logs.

A sample detection query is also provided in the Azure Sentinel GitHub. With the table definition above, it is as simple as:

  1. Join the indicators against the logs ingested into Azure Sentinel as follows:
covidIndicators
| join ( CommonSecurityLog | where TimeGenerated >= ago(7d)
| where isnotempty(FileHashValue)
) on $left.FileHashValue == $right.FileHash
  1. Then, select “New alert rule” to configure Azure Sentinel to raise incidents based on this query returning results.

CyberSecurityDemo in Azure Sentinel logs.

You should begin to see Alerts in Azure Sentinel for any detections related to these COVID threat indicators.

Microsoft Threat Protection provides protection for the threats associated with these indicators. Attacks with these Covid-19-themed indicators are blocked by Office 365 ATP and Microsoft Defender ATP.

While MTP customers are already protected, they can also make use of these indicators for additional hunting scenarios using the MTP Advanced Hunting capabilities.

Here is a hunting query to see if any process created a file matching a hash on the list.

let covidIndicators = (externaldata(TimeGenerated:datetime, FileHashValue:string, FileHashType: string )
[@"https://raw.githubusercontent.com/Azure/Azure-Sentinel/master/Sample%20Data/Feeds/Microsoft.Covid19.Indicators.csv"]
with (format="csv"))
| where FileHashType == 'sha256' and TimeGenerated > ago(1d);
covidIndicators
| join (DeviceFileEvents
| where Timestamp > ago(1d)
| where ActionType == 'FileCreated'
| take 100) on $left.FileHashValue  == $right.SHA256

Advanced hunting in Microsoft Defender Security Center.

This is an Advanced Hunting query in MTP that searches for any recipient of an attachment on the indicator list and sees if any recent anomalous log-ons happened on their machine. While COVID threats are blocked by MTP, users targeted by these threats may be at risk for non-COVID related attacks and MTP is able to join data across device and email to investigate them.

let covidIndicators = (externaldata(TimeGenerated:datetime, FileHashValue:string, FileHashType: string )    [@"https://raw.githubusercontent.com/Azure/Azure-Sentinel/master/Sample%20Data/Feeds/Microsoft.Covid19.Indicators.csv"] with (format="csv"))
| where FileHashType == 'sha256' and TimeGenerated > ago(1d);
covidIndicators
| join (  EmailAttachmentInfo  | where Timestamp > ago(1d)
| project NetworkMessageId , SHA256
) on $left.FileHashValue  == $right.SHA256
| join (
EmailEvents
| where Timestamp > ago (1d)
) on NetworkMessageId
| project TimeEmail = Timestamp, Subject, SenderFromAddress, AccountName = tostring(split(RecipientEmailAddress, "@")[0])
| join (
DeviceLogonEvents
| project LogonTime = Timestamp, AccountName, DeviceName
) on AccountName
| where (LogonTime - TimeEmail) between (0min.. 90min)
| take 10

Advanced hunting in Microsoft 365 security.

Connecting an MISP instance to Azure Sentinel

The indicators published on the Azure Sentinel GitHub page can be consumed directly via MISP’s feed functionality. We have published details on doing this at this URL: https://aka.ms/msft-covid19-misp. Please refer to the Azure Sentinel documentation on connecting data from threat intelligence providers.

Using the indicators if you are not an Azure Sentinel or MTP customer

Yes, the Azure Sentinel GitHub is public: https://aka.ms/msft-covid19-Indicators

Examples of phishing campaigns in this threat intelligence

The following is a small sample set of the types of COVID-themed phishing lures using email attachments that will be represented in this feed. Beneath each screenshot are the relevant hashes and metadata.

Figure 1: Spoofing WHO branding with “cure” and “vaccine” messaging with a malicious .gz file.

Name: CURE FOR CORONAVIRUS_pdf.gz

World Health Organization phishing email.

Figure 2: Spoofing Red Cross Safety Tips with malicious .docm file.

Name: COVID-19 SAFETY TIPS.docm

Red Cross phishing email.

Figure 3: South African banking lure promoting COVID-19 financial relief with malicious .html files.

Name: SBSA-COVID-19-Financial Relief.html

Financial relief phishing email.

Figure 4: French language spoofed correspondence from the WHO with malicious XLS Macro file.

Name:✉-Covid-19 Relief Plan5558-23636sd.htm

Coronavirus-themed phishing email.

If you have questions or feedback on this COVID-19 feed, please email msft-covid19-ti@microsoft.com.

The post Open-sourcing new COVID-19 threat intelligence appeared first on Microsoft Security.

Protecting your organization against password spray attacks

April 23rd, 2020 No comments

When hackers plan an attack, they often engage in a numbers game. They can invest significant time pursing a single, high-value target—someone in the C-suite for example and do “spear phishing.” Or if they just need low-level access to gain a foothold in an organization or do reconnaissance, they target a huge volume of people and spend less time on each one which is called “password spray.” Last December Seema Kathuria and I described an example of the first approach in Spear phishing campaigns—they’re sharper than you think! Today, I want to talk about a high-volume tactic: password spray.

In a password spray attack, adversaries “spray” passwords at a large volume of usernames. When I talk to security professionals in the field, I often compare password spray to a brute force attack. Brute force is targeted. The hacker goes after specific users and cycles through as many passwords as possible using either a full dictionary or one that’s edited to common passwords. An even more targeted password guessing attack is when the hacker selects a person and conducts research to see if they can guess the user’s password—discovering family names through social media posts, for example. And then trying those variants against an account to gain access. Password spray is the opposite. Adversaries acquire a list of accounts and attempt to sign into all of them using a small subset of the most popular, or most likely, passwords. Until they get a hit. This blog describes the steps adversaries use to conduct these attacks and how you can reduce the risk to your organization.

Three steps to a successful password spray attack

Step 1: Acquire a list of usernames

It starts with a list of accounts. This is easier than it sounds. Most organizations have a formal convention for emails, such as firstname.lastname@company.com. This allows adversaries to construct usernames from a list of employees. If the bad actor has already compromised an account, they may try to enumerate usernames against the domain controller. Or, they find or buy usernames online. Data can be compiled from past security breaches, online profiles, etc. The adversary might even get some verified profiles for free!

Step 2: Spray passwords

Finding a list of common passwords is even easier. A Bing search reveals that publications list the most common passwords each year. 123456, password, and qwerty are typically near the top. Wikipedia lists the top 10,000 passwords. There are regional differences that may be harder to discovery, but many people use a favorite sports teams, their state, or company as a password. For example, Seahawks is a popular password choice in the Seattle area. Once hackers do their research, they carefully select a password and try it against the entire list of accounts as shown in Figure 1. If the attack is not successful, they wait 30 minutes to avoid triggering a timeout, and then try the next password.

Protecting your organization against password spray attacks

Figure 1:  Password spray using one password across multiple accounts.

Step 3: Gain access

Eventually one of the passwords works against one of the accounts. And that’s what makes password spray a popular tactic—attackers only need one successful password + username combination. Once they have it, they can access whatever the user has access to, such as cloud resources on OneDrive. Or use the exploited account to do internal reconnaissance on the target network and get deeper into the systems via elevation of privilege.

Even if the vast majority of your employees don’t use popular passwords, there is a risk that hackers will find the ones that do. The trick is to reduce the number of guessable passwords used at your organization.

Configure Azure Active Directory (Azure AD) Password Protection

Azure AD Password Protection allows you to eliminate easily guessed passwords and customize lockout settings for your environment. This capability includes a globally banned password list that Microsoft maintains and updates. You can also block a custom list of passwords that are relevant to your region or company. Once enabled, users won’t be able to choose a password on either of these lists, making it significantly less likely that an adversary can guess a user’s password. You can also use this feature to define how many sign-in attempts will trigger a lockout and how long the lockout will last.

Simulate attacks with Office 365 Advanced Threat Protection (Office 365 ATP)

Attack Simulator in Office 365 ATP lets you run realistic, but simulated phishing and password attack campaigns in your organization. Pick a password and then run the campaign against as many users as you want. The results will let you know how many people are using that password. Use the data to train users and build your custom list of banned passwords.

Begin your passwordless journey

The best way to reduce your risk of password spray is to eliminate passwords entirely. Solutions like Windows Hello or FIDO2 security keys let users sign in using biometrics and/or a physical key or device. Get started by enabling Multi-Factor Authentication (MFA) across all your accounts. MFA requires that users sign in with at least two authentication factors: something they know (like a password or PIN), something they are (such as biometrics), and/or something they have (such as a trusted device).

Learn more

We make progress in cybersecurity by increasing how much it costs the adversary to conduct the attack. If we make guessing passwords too hard, hackers will reduce their reliance on password spray.

Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. For more information about our security solutions visit our website. Or reach out to me on LinkedIn or Twitter.

The post Protecting your organization against password spray attacks appeared first on Microsoft Security.

Microsoft shares new threat intelligence, security guidance during global crisis

April 8th, 2020 No comments

Ready or not, much of the world was thrust into working from home, which means more people and devices are now accessing sensitive corporate data across home networks. Defenders are working round the clock to secure endpoints and ensure the fidelity of not only those endpoints, but also identities, email, and applications, as people are using whatever device they need to get work done. This isn’t something anyone, including our security professionals, were given time to prepare for, yet many customers have been thrust into a new environment and challenged to respond quickly. Microsoft is here to help lighten the load on defenders, offer guidance on what to prioritize to keep your workforce secure, and share resources about the built-in protections of our products.

Attackers are capitalizing on fear. We’re watching them. We’re pushing back.

Our inboxes, mobile alerts, TVs, and news updates are all COVID-19, all the time. It’s overwhelming and attackers know it. They know many are clicking without looking because stress levels are high and they’re taking advantage of that. That’s why we’re seeing an increase in the success of phishing and social engineering attacks. Attackers don’t suddenly have more resources they’re diverting towards tricking users; instead they’re pivoting their existing infrastructure, like ransomware, phishing, and other malware delivery tools, to include COVID-19 keywords that get us to click. Once we click, they can infiltrate our inboxes, steal our credentials, share more malicious links with coworkers across collaboration tools, and lie in wait to steal information that will give them the biggest payout. This is where intelligent solutions that can monitor for malicious activity across – that’s the key word – emails, identities, endpoints, and applications with built-in automation to proactively protect, detect, respond to, and prevent these types of attacks from being successful will help us fight this battle against opportunistic attackers.

Our threat intelligence teams at Microsoft are actively monitoring and responding to this shift in focus. Our data shows that these COVID-19 themed threats are retreads of existing attacks that have been slightly altered to tie to this pandemic. This means we’re seeing a changing of lures, not a surge in attacks. Our intelligence shows that these attacks are settling into a rhythm that is the normal ebb and flow of the threat environment:

  • Every country in the world has seen at least one COVID-19 themed attack (see map below). The volume of successful attacks in outbreak-hit countries is increasing, as fear and the desire for information grows. Our telemetry shows that China, the United States, and Russia have been hit the hardest.
  • The trendy and pervasive Trickbot and Emotet malware families are very active and rebranding their lures to take advantage of the outbreak. We have observed 76 threat variants to date globally using COVID-19 themed lures (map below).
  • Microsoft tracks thousands of email phishing campaigns that cover millions of malicious messages every week. Phishing campaigns are more than just one targeted email at one targeted user. They include potentially hundreds or thousands of malicious emails targeting hundreds or thousands of users, which is why they can be so effective. Of the millions of targeted messages we see each day, roughly 60,000 include COVID-19 related malicious attachments or malicious URLs.
  • While that number sounds very large, it’s important to note that that is less than two percent of the total volume of threats we actively track and protect against daily, which reinforces that the overall volume of threats is not increasing but attackers are shifting their techniques to capitalize on fear. Attackers are impersonating established entities like the World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and the Department of Health to get into inboxes. Here’s an example of what just one of these malicious emails looks like now compared to before the COVID-19 crisis:

Comparison of malicious emails used in malware campaigns before the crisis and during

  • In a single day, SmartScreen sees and processes more than 18,000 malicious COVID-19-themed URLs and IP addresses. This again shows us that attackers are getting more aggressive and agile in the delivery of their attacks – using the same delivery methods, but swapping out the malicious URLs on a more frequent basis in an effort to evade machine learning protections.
  • Microsoft Office 365 Advanced Threat Protection prevented a big phishing campaign that used a fake Office 365 sign-in page to capture credentials. Roughly 2,300 unique HTML attachments posing as COVID-19 financial compensation information were caught in 24 hours in this one campaign. We expect to see more campaigns that utilize the economic fear from lost income, as governments widen the mandatory shutdown of their economies and stimulus funds begin to be issued in the U.S.
  • Several advanced persistent threat and nation-state actors have been observed targeting healthcare organizations and using COVID-19-themed lures in their campaigns. We continue to identify, track, and build proactive protections against these threats in all of our security products. When customers are affected by these attacks, Microsoft notifies the customer directly to help speed up investigations. We also report malicious COVID-19-themed domains and URLs to the proper authorities so that they can be taken down, and where possible, the individuals behind them prosecuted.

Map showing global impact of COVID-19-themed-attacks

Relative impact of COVID-19 themed attacks across the world by file count (as of April 7, 2020)

From endpoints and identities to the cloud, we have you covered

While phishing email is a common attack vector, it’s only one of the many points of entry for attackers. Defenders need a much broader view and solutions for remediation than visibility into just one entry method. An attacker’s primary goal is to gain entry and expand across domains so they can persist in an organization and lie in wait to steal or encrypt as much sensitive information as they can to reap the biggest payout. Defenders require visibility across each of these domains and automated correlation across emails, identities, endpoints, and cloud applications to see the full scope of compromise. Only with this view can defenders adequately remediate affected assets, apply Conditional Access, and prevent the same or similar attacks from being successful again.

During this trying time, we want to remind our customers what protections you have built into our products and offer guidance for what to prioritize:

  • Protect endpoints with Microsoft Defender ATP, which covers licensed users for up to five concurrent devices that can be easily onboarded at any time. Microsoft Defender ATP monitors threats from across platforms, including macOS. Our tech community post includes additional guidance, best practices, onboarding, and licensing information.
  • Enable multi-factor authentication (MFA) and Conditional Access through Azure Active Directory to protect identities. This is more important than ever to mitigate credential compromise as users work from home. We recommend connecting all apps to Azure AD for single sign-on – from SaaS to on-premises apps; enabling MFA and applying Conditional Access policies; and extending secure access to contractors and partners. Microsoft also offers a free Azure AD service for single sign-on, including MFA using the Microsoft Authenticator app.
  • Safeguard inboxes and email accounts with Office 365 ATP, Microsoft’s cloud-based email filtering service, which shields against phishing and malware, including features to safeguard your organization from messaging-policy violations, targeted attacks, zero-days, and malicious URLs. Intelligent recommendations from Security Policy Advisor can help reduce macro attack surface, and the Office Cloud Policy Service can help you implement security baselines.
  • Microsoft Cloud App Security can help protect against shadow IT and unsanctioned app usage, identify and remediate cloud-native attacks, and control how data travels across cloud apps from Microsoft or third-party applications.

Microsoft Threat Protection correlates signals from across each of these domains using Azure ATP, Microsoft Defender ATP, Office 365 ATP, and Microsoft Cloud App Security, to understand the entire attack chain to help defenders prioritize which threats are most critical to address and to auto-heal affected user identities, email inboxes, endpoints, and cloud apps back to a safe state. Our threat intelligence combines signals from not just one attack vector like email phishing, but from across emails, identities, endpoints, and cloud apps to understand how the threat landscape is changing and build that intelligence into our products to prevent attack sprawl and persistence. The built-in, automated remediation capabilities across these solutions can also help reduce the manual workload on defenders that comes from the multitude of new devices and connections.

Azure Sentinel is a cloud-native SIEM that brings together insights from Microsoft Threat Protection and Azure Security Center, along with the whole world of third-party and custom application logs to help security teams gain visibility, triage, and investigate threats across their enterprise. As with all Microsoft Security products, Azure Sentinel customers benefit from Microsoft threat intelligence to detect and hunt for attacks. Azure Sentinel makes it easy to add new data sources and scale existing ones with built-in workbooks, hunting queries, and analytics to help teams identify, prioritize, and respond to threats. We recently shared a threat hunting notebook developed to hunt for COVID-19 related threats in Azure Sentinel.

Cloud-delivered protections are a critical part of staying up to date with the latest security updates and patches. If you don’t already have them turned on, we highly recommend it. We also offer advanced hunting through both Microsoft Threat Protection and Azure Sentinel.

We’ll keep sharing and protecting – stay tuned, stay safe

Remember that we at Microsoft are 3,500 defenders strong. We’re very actively monitoring the threat landscape, we’re here to help: we’re providing resources, guidance, and for dire cases we have support available from services like the Microsoft Detection and Response (DART) team to help investigate and remediate.

All of our guidance related to COVID-19 is and will be posted here. We will continue to share updates across channels to keep you informed. Please stay safe, stay connected, stay informed.

THANK YOU to our defenders who are working tirelessly to keep us secure and connected during this pandemic.

 

 

-Rob and all of us from across Microsoft security

 

 

To stay up to date with verified information on the COVID-19 crisis, the following sites are available:

 

The post Microsoft shares new threat intelligence, security guidance during global crisis appeared first on Microsoft Security.

Full Operational Shutdown—another cybercrime case from the Microsoft Detection and Response Team

April 2nd, 2020 No comments

Recently, we published our first case report (001: …And Then There Were Six) by the Microsoft Detection and Response Team (DART). We received significant positive response from our customers and colleagues and our team has been getting inquiries asking for more reports. We are glad to share the DART Case Report 002: Full Operational Shutdown.

In the report 002, we cover an actual incident response engagement where a polymorphic malware spread through the entire network of an organization. After a phishing email delivered Emotet, a polymorphic virus that propagates via network shares and legacy protocols, the virus shut down the organization’s core services. The virus avoided detection by antivirus solutions through regular updates from an attacker-controlled command-and-control (C2) infrastructure, and spread through the company’s systems, causing network outages and shutting down essential services for nearly a week. In our report, you can read the details of the attack and how DART responded, review the attack lateral progression diagram and learn best practices from DART experts.

Stay tuned for more DART case reports where you’ll find unique stories from our team’s engagements around the globe. As always, you can reach out to your Microsoft account manager or Premier Support contact for more information on DART services.

 

DART provides the most complete and thorough investigations by leveraging a combination of proprietary tools and Microsoft Security products, close connections with internal Microsoft threat intelligence and product groups, as well as strategic partnerships with security organizations around the world.

The post Full Operational Shutdown—another cybercrime case from the Microsoft Detection and Response Team appeared first on Microsoft Security.

Protecting against coronavirus themed phishing attacks

March 20th, 2020 No comments

The world has changed in unprecedented ways in the last several weeks due to the coronavirus pandemic. While it has brought out the best in humanity in many ways, as with any crisis it can also attract the worst in some. Cybercriminals use people’s fear and need for information in phishing attacks to steal sensitive information or spread malware for profit. Even as some criminal groups claim they’ll stop attacking healthcare and nursing homes, the reality is they can’t fully control how malware spreads.

While phishing and other email attacks are indeed happening, the volume of malicious emails mentioning the coronavirus is very small. Still, customers are asking us what Microsoft is doing to help protect them from these types of attacks, and what they can do to better protect themselves. We thought this would be a useful time to recap how our automated detection and signal-sharing works to protect customers (with a specific recent example) as well as share some best practices you can use personally to stay safe from phishing attempts.

What Microsoft is doing

First, 91 percent of all cyberattacks start with email. That’s why the first line of defense is doing everything we can to block malicious emails from reaching you in the first place. A multi-layered defense system that includes machine learning, detonation, and signal-sharing is key in our ability to quickly find and shut down email attacks.

If any of these mechanisms detect a malicious email, URL, or attachment, the message is blocked and does not make its way to your inbox. All attachments and links are detonated (opened in isolated virtual machines). Machine learning, anomaly analyzers, and heuristics are used to detect malicious behavior. Human security analysts continuously evaluate user-submitted reports of suspicious mail to provide additional insights and train machine learning models.

Once a file or URL is identified as malicious, the information is shared with other services such as Microsoft Defender Advanced Threat Protection (ATP) to ensure endpoint detection benefits from email detection, and vice versa.

An interesting example of this in action occurred earlier this month, when an attacker launched a spear-phishing campaign that lasted less than 30 minutes.

Attackers crafted an email designed to look like a legitimate supply chain risk report for food coloring additives with an update based on disruptions due to coronavirus. The attachment, however, was malicious and delivered a sophisticated, multi-layer payload based on the Lokibot trojan (Trojan:Win32/Lokibot.GJ!MTB).

Screenshot of a phishing email about a coronavirus update.

Had this payload been successfully deployed, hackers could have used it to steal credentials for other systems—in this case FTP accounts and passwords—which could then be used for further attacks.

Only 135 customer tenants were targeted, with a spray of 2,047 malicious messages, but no customers were impacted by the attack. The Office 365 ATP detonation service, signal-sharing across services, and human analysts worked together to stop it.

And thanks to signal sharing across services, customers not using a Microsoft email service like Office 365, hosted Exchange, or Outlook.com, but using a Windows PC with Microsoft Defender enabled, were fully protected. When a user attempted to open the malicious attachment from their non-Microsoft email service, Microsoft Defender kicked in, querying its cloud-based machine learning models and found that the attachment was blocked based on a previous Office 365 ATP cloud detection. The attachment was prevented from executing on the PC and the customer was protected.

What you can do

While bad actors are attempting to capitalize on the COVID-19 crisis, they are using the same tactics they always do. You should be especially vigilant now to take steps to protect yourself.

Make sure your devices have the latest security updates installed and an antivirus or anti-malware service. For Windows 10 devices, Microsoft Defender Antivirus is a free built-in service enabled through Settings. Turn on cloud-delivered protection and automatic sample submission to enable artificial intelligence (AI) and machine learning to quickly identify and stop new and unknown threats.

Enable the protection features of your email service. If you have Office 365, you can learn about Exchange Online Protection here and Office 365 ATP here.

Use multi-factor authentication (MFA) on all your accounts. Most online services now provide a way to use your mobile device or other methods to protect your accounts in this way. Here’s information on how to use Microsoft Authenticator and other guidance on this approach.

MFA support is available as part of the Azure Active Directory (Azure AD) Free offering. Learn more here.

Educate yourself, friends, and colleagues on how to recognize phishing attempts and report suspected encounters. Here are some of the tell-tale signs.

  • Spelling and bad grammar. Cybercriminals are not known for their grammar and spelling. Professional companies or organizations usually have an editorial staff to ensure customers get high-quality, professional content. If an email message is fraught with errors, it is likely to be a scam.
  • Suspicious links. If you suspect that an email message is a scam, do not click on any links. One method of testing the legitimacy of a link is to rest your mouse—but not click—over the link to see if the address matches what was typed in the message. In the following example, resting the mouse on the link reveals the real web address in the box with the yellow background. Note that the string of IP address numbers looks nothing like the company’s web address.

  • Suspicious attachments. If you receive an email with an attachment from someone you don’t know, or an email from someone you do know but with an attachment you weren’t expecting, it may be a phishing attempt, so we recommend you do not open any attachments until you have verified their authenticity. Attackers use multiple techniques to try and trick recipients into trusting that an attached file is legitimate.
    • Do not trust the icon of the attachment.
    • Be wary of multiple file extensions, such as “pdf.exe” or “rar.exe” or “txt.hta”.
    • If in doubt, contact the person who sent you the message and ask them to confirm that the email and attachment are legitimate.
  • Threats. These types of emails cause a sense of panic or pressure to get you to respond quickly. For example, it may include a statement like “You must respond by end of day.” Or saying that you might face financial penalties if you don’t respond.
  • Spoofing. Spoofing emails appear to be connected to legitimate websites or companies but take you to phony scam sites or display legitimate-looking pop-up windows.
  • Altered web addresses. A form of spoofing where web addresses that closely resemble the names of well-known companies, but are slightly altered; for example, “www.micorsoft.com” or “www.mircosoft.com”.
  • Incorrect salutation of your name.
  • Mismatches. The link text and the URL are different from one another; or the sender’s name, signature, and URL are different.

If you think you’ve received a phishing email or followed a link in an email that has taken you to a suspicious website, there are few ways to report what you’ve found.

If you think the mail you’ve received is suspicious:

  • Outlook.com. If you receive a suspicious email message that asks for personal information, select the checkbox next to the message in your Outlook inbox. Select the arrow next to Junk, and then point to Phishing scam.
  • Microsoft Office Outlook 2016 and 2019 and Microsoft Office 365. While in the suspicious message, select Report message in the Protection tab on the ribbon, and then select Phishing.

If you’re on a suspicious website:

  • Microsoft Edge. While you’re on a suspicious site, select the More (…) icon > Send feedback > Report Unsafe site. Follow the instructions on the web page that displays to report the website.
  • Internet Explorer. While you’re on a suspicious site, select the gear icon, point to Safety, and then select Report Unsafe Website. Follow the instructions on the web page that displays to report the website.

If you think you have a suspicious file:

  • Submit the file for analysis.

This is just one area where our security teams at Microsoft are working to protect customers and we’ll share more in the coming weeks. For additional information and best practices for staying safe and productive through remote work, community support and education during these challenging times, visit Microsoft’s COVID-19 resources page for the latest information.

The post Protecting against coronavirus themed phishing attacks appeared first on Microsoft Security.

Changing the Monolith—Part 4: Quick tech wins for a cloud-first world

February 13th, 2020 No comments

You may have heard that identity is the “new” perimeter. Indeed, with the proliferation of phishing attacks over the past few years, one of the best ways to secure data is to ensure that identity—the primary way we access data—can be trusted.

How do we secure identity?

Start by evaluating how users are authenticating to all applications inside and outside the organization. I say all applications, because it doesn’t take much effort for a hacker to pivot from a low-value, non-sensitive application to a high-value and highly-sensitive application, quickly gaining access to confidential or restricted data.

Similarly, Multi-Factor Authentication (MFA) must be enforced for all users as well, not just highly privileged users. Remember that it is simple for bad actors to pass-the-hash, run a Golden Ticket Attack, or use other techniques to elevate their privileges and gain access to sensitive data.

Modern authentication encourages us to reduce vulnerable legacy authentication methods, including Kerberos and NTLM. Additionally, modern authentication requires that we rely on more than one factor of authentication for all users. These factors range from something you know (password or one-time password), something you have (hardware token or soft token), or something you are (biometrics like 3D facial recognition or fingerprint matching).

Image of a worker approving a sign-in from his phone.

Start with MFA.

Requiring MFA for all applications, whether on-premises or in the cloud, is a great start. When using MFA, consider enforcing an authenticator app or a one-time password mechanism as they are typically not as susceptible to man-in-the-middle attacks, compared to text-back codes or phone calls that may be intercepted with spoofing.

The least vulnerable MFA mechanisms include FIDO2, which utilizes a biometric device or USB hardware token like YubiKey, and machine learning systems that can provide conditional access based on Zero Trust and time-of-authentication context.

Here is the context commonly evaluated by machine learning authentication systems:

  • Can an authentication token be obtained?
  • Does the user have a valid username, password, and a second form of authentication (MFA), like a biometric validation (fingerprint or 3D facial recognition) through an authenticator app?
  • What is the risk score of the user?
  • Is the user authenticating from two places at nearly the same time (Impossible Traveler)?
  • Has the user’s password been discovered on the Dark Web because of an account and password database breach?
  • Is this a reasonable time for the user to be signed in based upon past behavior?
  • Is the user signing-in from an anonymous source like a Tor exit node?
  • What is the risk score of the device?
  • Has the device experienced unresolved risk in the last several days?
  • Has the machine been exposed to malware?
  • Is the machine running a high-risk application?
  • Are the antimalware signatures up to date?
  • Are all the critical and high software patches applied?
  • Are there sensitive documents on the device?

With the enforcement of MFA, a single, unified MFA reduces the success of phishing attacks due to password reuse or social engineering. With web-based Authentication-as-a-Service (AaaS) applications, MFA is easy to implement across the enterprise. Modern operating systems now enforce multifactor authentication by default, including Windows 10 Hello, macOS, iOS, and Android. Most modern on-premises and cloud applications should be able to consume SSO authentication standards like SAML or OpenID and OAth2 authorization.

Moving toward a secure SSO posture

Implementing a single identity source for all applications leads the organization to a better and less time-consuming and complicated user experience, and an arguably more secure SSO posture by:

  • Reducing the number of passwords that users need to remember or save—quite often insecurely—to access their applications.
  • Introducing pass-through authentication and authorization, so that once a user authenticates to an operating system, they have unprompted access to both on-premises and cloud apps, using the same security token created when they signed in to the operating system using MFA.
  • Reducing the threat of untimely termination/missed identity decommissioning by decreasing “identity sprawl,” which is what you encounter when your organization has multiple identities in multiple applications per user. That is sometimes the result of non-integrated entities or not yet integrated entities and affiliates. B2B approaches to SSO can be explored to solve the problems associated with not integrating a business unit or operating group into the organization’s core directory.

Image of a hand hovering over a keyboard.

Considering user satisfaction is critical.

MFA and SSO together increases user satisfaction, making the CISO a business enabler rather than a productivity and collaboration roadblock. Cloud-based MFA and SSOP directory systems have been shown to be more available than on-premises directory or federation services with many cloud providers providing 99.9 percent uptime. A three-nines Service Level Agreement (SLA) is challenging to achieve on-premises with limited IT staff and budget!

Stay tuned

Stay tuned for the next installment of my Changing the Monolith series. In the meantime, check out the first three posts in the series:

Also, bookmark the Security blog to keep up with our expert coverage on security matters and follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Changing the Monolith—Part 4: Quick tech wins for a cloud-first world appeared first on Microsoft Security.

Ransomware response—to pay or not to pay?

December 16th, 2019 No comments

The increased connectivity of computers and the growth of Bring Your Own Device (BYOD) in most organizations is making the distribution of malicious software (malware) easier. Unlike other types of malicious programs that may usually go undetected for a longer period, a ransomware attack is usually experienced immediately, and its impact on information technology infrastructure is often irreversible.

As part of Microsoft’s Detection and Response Team (DART) Incident Response engagements, we regularly get asked by customers about “paying the ransom” following a ransomware attack. Unfortunately, this situation often leaves most customers with limited options, depending on the business continuity and disaster recovery plans they have in place.

The two most common options are either to pay the ransom (with the hopes that the decryption key obtained from the malicious actors works as advertised) or switch gears to a disaster recovery mode, restoring systems to a known good state.

The unfortunate truth about most organizations is that they are often only left with the only option of paying the ransom, as the option to rebuild is taken off the table by lack of known good backups or because the ransomware also encrypted the known good backups. Moreover, a growing list of municipalities around the U.S. has seen their critical infrastructure, as well as their backups, targeted by ransomware, a move by threat actors to better guarantee a payday.

We never encourage a ransomware victim to pay any form of ransom demand. Paying a ransom is often expensive, dangerous, and only refuels the attackers’ capacity to continue their operations; bottom line, this equates to a proverbial pat on the back for the attackers. The most important thing to note is that paying cybercriminals to get a ransomware decryption key provides no guarantee that your encrypted data will be restored.

So, what options do we recommend? The fact remains that every organization should treat a cybersecurity incident as a matter of when it will happen and not whether it will happen. Having this mindset helps an organization react quickly and effectively to such incidents when they happen. Two major industry standard frameworks, the Sysadmin, Audit, Network, and Security (SANS) and the National Institute of Standards and Technology (NIST), both have published similar concepts on responding to malware and cybersecurity incidents. The bottom line is that every organization needs to be able to plan, prepare, respond, and recover when faced with a ransomware attack.

Outlined below are steps designed to help organizations better plan and prepare to respond to ransomware and major cyber incidents.

How to plan and prepare to respond to ransomware

1. Use an effective email filtering solution

According to the Microsoft Security Intelligence Report Volume 24 of 2018, spam and phishing emails are still the most common delivery method for ransomware infections. To effectively stop ransomware at its entry point, every organization needs to adopt an email security service that ensures all email content and headers entering and leaving the organization are scanned for spam, viruses, and other advanced malware threats. By adopting an enterprise-grade email protection solution, most cybersecurity threats against an organization will be blocked at ingress and egress.

2. Regular hardware and software systems patching and effective vulnerability management

Many organizations are still failing to adopt one of the age-old cybersecurity recommendations and important defenses against cybersecurity attacks—applying security updates and patches as soon as the software vendors release them. A prominent example of this failure was the WannaCry ransomware events in 2017, one of the largest global cybersecurity attacks in the history of the internet, which used a leaked vulnerability in Windows networking Server Message Block (SMB) protocol, for which Microsoft had released a patch nearly two months before the first publicized incident. Regular patching and an effective vulnerability management program are important measures to defend against ransomware and other forms of malware and are steps in the right direction to ensure every organization does not become a victim of ransomware.

3. Use up-to-date antivirus and an endpoint detection and response (EDR) solution

While owning an antivirus solution alone does not ensure adequate protection against viruses and other advanced computer threats, it’s very important to ensure antivirus solutions are kept up to date with their software vendors. Attackers invest heavily in the creation of new viruses and exploits, while vendors are left playing catch-up by releasing daily updates to their antivirus database engines. Complementary to owning and updating an antivirus solution is the use of EDR solutions that collect and store large volumes of data from endpoints and provide real-time host-based, file-level monitoring and visibility to systems. The data sets and alerts generated by this solution can help to stop advanced threats and are often leveraged for responding to security incidents.

4. Separate administrative and privileged credentials from standard credentials

Working as a cybersecurity consultant, one of the first recommendations I usually provide to customers is to separate their system administrative accounts from their standard user accounts and to ensure those administrative accounts are not useable across multiple systems. Separating these privileged accounts not only enforces proper access control but also ensures that a compromise of a single account doesn’t lead to the compromise of the entire IT infrastructure. Additionally, using Multi-Factor Authentication (MFA), Privileged Identity Management (PIM), and Privileged Access Management (PAM) solutions are ways to effectively combat privileged account abuse and a strategic way of reducing the credential attack surface.

5. Implement an effective application whitelisting program

It’s very important as part of a ransomware prevention strategy to restrict the applications that can run within an IT infrastructure. Application whitelisting ensures only applications that have been tested and approved by an organization can run on the systems within the infrastructure. While this can be tedious and presents several IT administrative challenges, this strategy has been proven effective.

6. Regularly back up critical systems and files

The ability to recover to a known good state is the most critical strategy of any information security incident plan, especially ransomware. Therefore, to ensure the success of this process, an organization must validate that all its critical systems, applications, and files are regularly backed up and that those backups are regularly tested to ensure they are recoverable. Ransomware is known to encrypt or destroy any file it comes across, and it can often make them unrecoverable; consequently, it’s of utmost importance that all impacted files can be easily recovered from a good backup stored at a secondary location not impacted by the ransomware attack.

Learn more and keep updated

Learn more about how DART helps customers respond to compromises and become cyber-resilient. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Ransomware response—to pay or not to pay? appeared first on Microsoft Security.

The quiet evolution of phishing

December 11th, 2019 No comments

The battle against phishing is a silent one: every day, Office 365 Advanced Threat Protection detects millions of distinct malicious URLs and email attachments. Every year, billions of phishing emails don’t ever reach mailboxes—real-world attacks foiled in real-time. Heuristics, detonation, and machine learning, enriched by signals from Microsoft Threat Protection services, provide dynamic, robust protection against email threats.

Phishers have been quietly retaliating, evolving their techniques to try and evade these protections. In 2019, we saw phishing attacks reach new levels of creativity and sophistication. Notably, these techniques involve the abuse of legitimate cloud services like those offered by Microsoft, Google, Amazon, and others. At Microsoft, we have aggressive processes to identify and take down nefarious uses of our services without affecting legitimate applications.

In this blog we’ll share three of the most notable attack techniques we spotted this year. We uncovered these attacks while studying Office 365 ATP signals, which we use to track and deeply understand attacker activity and build durable defenses against evolving and increasingly sophisticated email threats.

Hijacked search results lead to phishing

Over the years, phishers have become better at evading detection by hiding malicious artifacts behind benign ones. This tactic manifests in, among many others, the use of URLs that point to legitimate but compromised websites or multiple harmless-looking redirectors that eventually lead to phishing.

One clever phishing campaign we saw in 2019 used links to Google search results that were poisoned so that they pointed to an attacker-controlled page, which eventually redirected to a phishing page. A traffic generator ensured that the redirector page was the top result for certain keywords.

Figure 1. Phishing attack that used poisoned search results

Using this technique, phishers were able to send phishing emails that contained only legitimate URLs (i.e., link to search results), and a trusted domain at that, for example:

  • hxxps://www[.]google[.]ru/#btnI&q=%3Ca%3EhOJoXatrCPy%3C/a%3E
  • hxxps://www[.]google[.]ru/#btnI&q=%3Ca%3EyEg5xg1736iIgQVF%3C/a%3E

The campaign was made even stealthier by its use of location-specific search results. When accessed by users in Europe, the phishing URL led to the redirector website c77684gq[.]beget[.]tech, and eventually to the phishing page. Outside Europe, the same URL returned no search results.

For this to work, attackers had to make sure that their website, c77684gq[.]beget[.]tech, was the top search result for the keyword “hOJoXatrCPy” when queried from certain regions. The website’s HTML code is composed of a redirector script and a series of anchor elements:

Figure 2. Redirector code

These anchor elements were designed to be crawled by search engines so that the page is indexed and returned as result for the search keywords that attackers wanted to use for their campaign.

Figure 3. Anchor tags containing search keywords

The attackers then set up a traffic generator to poison search results. Because the phishing URL used the open redirector functionality, it redirected to the top search result, hence the redirector page.

404 Not Found pages customized to be phishing sites

The other way that phishers evade detection is to use multiple URLs and sometimes even multiple domains for their campaigns. They use techniques like subdomain generation algorithms to try and always get ahead of solutions, which, without the right dynamic technologies, will be forced continually catch up as phishers generate more and more domains and URLs.

This year, attackers have found another shrewd way to serve phishing: custom 404 pages. We uncovered a phishing campaign targeting Microsoft that used 404 pages crafted as phishing pages, which gave phishers virtually unlimited phishing URLs.

Figure 4. Phishing attack that uses specially crafted 404 Not Found error page

The custom 404 page was designed to look like the legitimate Microsoft account sign-in page.

Figure 5. 404 page designed as phishing page

Because the malformed 404 page is served to any non-existent URL in an attacker-controlled domain, the phishers could use random URLs for their campaigns. For example, we saw these two URLs used in phishing campaigns; the attackers added a single character to the second one to generate a new URL but serve the same phishing page:

  • hxxps://skype-online8024[.]web[.]app/8cc1083b0ffdf1e5b9594c045c825b02d41d8cd98f00b204e9800998ecf8427e#ZG1jY2FubkBtb3Jicm9zLmNvbQ
  • hxxps://skype-online8024[.]web[.]app/8cc1083b0ffdf1e5b9594c045c825b02d41d8cd98f00b204e9800998ecf8427e#ZG1jY2FubkBtb3Jicm9zLmNvbQs

We also found that the attackers randomized domains, exponentially increasing the number of phishing URLs:

  • outlookloffice365usertcph4l3q[.]web[.]app
  • outlookloffice365userdqz75j6h[.]web[.]app
  • outlookloffice365usery6ykxo07[.]web[.]app

All of these non-existent URLs returned the 404 error page, i.e., the phishing page:

Figure 6. When phishing URL is accessed, server responds with HTTP 404 error message, which is a phishing page

Man-in-the-middle component for dynamic phishing attack

Phishers have also been getting better at impersonation: the more legitimate the phishing emails looked, the better their chances at tricking recipients. Countless brands both big and small have been targets of spoofing by phishers.

One particular phishing campaign in 2019 took impersonation to the next level. Instead of attackers copying elements from the spoofed legitimate website, a man-in-the-middle component captured company-specific information like logos, banners, text, and background images from Microsoft’s rendering site.

Phishers sent out emails with URLs pointing to an attacker-controlled server, which served as the man-in-the-middle component and simulated Microsoft sign-in pages. The server identified certain specific information based on the recipient’s email address, including the target company, and then gathered the information specific to that company. The result was the exact same experience as the legitimate sign-page, which could significantly reduce suspicion.

Figure 7. Phishing attack that abuses Microsoft’s rendering site

Using the same URL, the phishing site was rendered differently for different targeted users. To generate legitimate-looking phishing sites, the server used the following code to retrieve the banner used by the target’s victim company as identified by the domain information in the email address; the response is the URL for the company banner:

Figure 8. Code snippet for requesting the banner

The server also retrieved the text used in the company’s sign-in page; the response is the actual text specific to the target victim’s company:

Figure 9. Code snippet for requesting the company-specific text

To complete the legitimate-looking phishing page, the server requested the background image using the code below; the response is the URL to the image:

Figure 10. Codes snippets for requesting background image

Office 365 ATP: Durable and dynamic defense for evolving email threats

The phishing techniques that we discussed in this blog are vastly different from each, but they are all clever attempts to achieve something that’s very important for phishers and other cybercrooks: stealth. The longer phishers can quietly hide from security solutions, the more chances they have to invade inboxes and trick people into divulging sensitive information.

To hunt down phishing and other threats that don’t want to be found, Office 365 ATP uses advanced security technologies that expose sophisticated techniques. Our URL detonation technology can follow the attack chain so it can detect threats even if they hide behind legitimate services and multiple layers of redirectors.

This rich visibility into email threats allows Office 365 ATP to continuously inform and improve its heuristic and machine learning protections so that new and emerging campaigns are blocked in real-time—silently protecting customers from attacks even when they don’t know it. The insights from Office 365 ATP also allow our security experts to track emerging techniques and other attacker activities like the ones we discussed in this blog, allowing us to ensure that our protections are effective not just for the campaigns that we see today but those that might emerge in the future.

In addition, with the new campaign views in Office 365 ATP currently in preview, enterprises can get a broad picture of email campaigns observed in their network, with details like when the campaign started, the sending pattern and timeline, the list of IP addresses and senders used in the attack, which messages were blocked or otherwise, and other important information.

As an important component of Microsoft Threat Protection, Office 365 ATP provides critical security signals about threat that arrive via email—a common entry point for cyberattacks—to the rest of Microsoft’s security technologies, helping provide crucial protection at the early stages of attacks. Through signal-sharing and remediation orchestration across security solutions, Microsoft Threat Protection provides comprehensive and integrated protection for identities, endpoints, user data, apps, and infrastructure.

 

Patrick Estavillo
Office 365 ATP Research Team

 

 

 


Read all Microsoft security intelligence blog posts.

Follow us on Twitter @MsftSecIntel.

The post The quiet evolution of phishing appeared first on Microsoft Security.

Spear phishing campaigns—they’re sharper than you think

December 2nd, 2019 No comments

Even your most security-savvy users may have difficulty identifying honed spear phishing campaigns. Unlike traditional phishing campaigns that are blasted to a large email list in hopes that just one person will bite, advanced spear phishing campaigns are highly targeted and personal. They are so targeted, in fact, that we sometimes refer to them as “laser” phishing. And because these attacks are so focused, even tech-savvy executives and other senior managers have been duped into handing over money and sensitive files by a well-targeted email. That’s how good they are.

Even though spear phishing campaigns can be highly effective, they aren’t foolproof. If you understand how they work, you can put measures in place to reduce their power. Today, we provide an overview of how these campaigns work and steps you can take to better protect your organization and users.

Figure 1. Percentage of inbound emails associated with phishing on average increased in the past year, according to Microsoft security research (source: Microsoft Security Intelligence Report).

Step 1: Select the victims

To illustrate how clever some of these campaigns are, imagine a busy recruiter who is responsible for filling several IT positions. The IT director is under a deadline and desperate for good candidates. The recruiter posts the open roles on their social networks asking people to refer leads. A few days later they receive an email from a prospective candidate who describes the role in the email. The recruiter opens the attached resume and inadvertently infects their computer with malware. They have just been duped by a spear phisher.

How did it happen?

In a spear phishing campaign, the first thing an attacker needs to do is identify the victims. These are typically individuals who have access to the data the attacker wants. In this instance, the attackers want to infiltrate the human resources department because they want to exfiltrate employee social security numbers. To identify potential candidates they conduct extensive research, such as:

  • Review corporate websites to gain insight into processes, departments, and locations.
  • Use scripts to harvest email addresses.
  • Follow company social media accounts to understand company roles and the relationships between different people and departments.

In our example, the attackers learned by browsing the website that the convention for emails is first.last@company.com. They browsed the website, social media, and other digital sources for human resources professionals and potential hooks. It didn’t take long to notice several job openings. Once the recruiter shared details of jobs online, would-be attackers had everything they needed.

Why it might work: In this instance it would be logical for the victim to open the attachment. One of their job responsibilities is to collect resumes from people they don’t know.

Figure 2. Research and the attack are the first steps in a longer strategy to exfiltrate sensitive data.

Step 2: Identify the credible source

Now let’s consider a new executive who receives an email late at night from their boss, the CEO. The CEO is on a trip to China meeting with a vendor, and in the email, the CEO references the city they’re in and requests that the executive immediately wire $10,000 to pay the vendor. The executive wants to impress the new boss, so they jump on the request right away.

How did it happen?

In spear phishing schemes, the attacker needs to identify a credible source whose emails the victim will open and act on. This could be someone who appears to be internal to the company, a friend, or someone from a partner organization. Research into the victim’s relationships informs this selection. In the first example, we imagined a would-be job seeker that the victim doesn’t know. However, in many spear phishing campaigns, such as with our executive, the credible source is someone the victim knows.

To execute the spear phishing campaign against the executive, the attackers uncovered the following information:

  • Identified senior leaders at the company who have authority to sign off on large sums of money.
  • Selected the CEO as the credible source who is most likely to ask for the money.
  • Discovered details about the CEO’s upcoming trip based on social media posts.

Why it might work: Targeting executives by impersonating the CEO is increasingly common—some refer to it as whale phishing. Executives have more authority and access to information and resources than the average employee. People are inclined to respond quickly when the boss emails—especially if they say it’s urgent. This scenario takes advantage of those human power dynamics.

Figure 3. The more targeted the campaign, the bigger the potential payoff.

Step 3: Victim acts on the request

The final step in the process is for the victim to act on the request. In our first example, the human resources recruiter could have initiated a payload that would take over his computer or provide a tunnel for the attacker to access information. In our second scenario, the victim could have wired large sums of money to a fraudulent actor. If the victim does accidentally open the spear phishing email and respond to the call to action, open a malicious attachment, or visit an infected webpage, the following could happen:

  • The machine could be infected with malware.
  • Confidential information could be shared with an adversary.
  • A fraudulent payment could be made to an adversary.

Catch more phishy emails

Attackers have improved their phishing campaigns to better target your users, but there are steps you can take to reduce the odds that employees will respond to the call to action. We recommend that you do the following:

  • Educate users on how to detect phishing emails—Spear phishing emails do a great job of effectively impersonating a credible source; however, there are often small details that can give them away. Help users identify phish using training tools that simulate a real phish. Here are a few tells that are found in some phish that you can incorporate into your training:
    • An incorrect email address or one that resembles what you expect but is slightly off.
    • A sense of urgency coupled with a request to break company policy. For example, fast tracking payments without the usual checks and procedures.
    • Emotive language to evoke sympathy or fear. For example, the impersonated CEO might say you’re letting them down if you do not make the urgent payment.
    • Inconsistent wording or terminology. Does the business lingo align with company conventions? Does the source typically use those words?

  • Encourage users to communicate potential phishing emails—It’s important that users flag phishing emails to the proper team. This can be done natively within many enterprise email systems. It can also be helpful if users talk with their peers about the phishing emails they receive. Spear phishers typically don’t send blast emails; however, they may select several people from the same department or with business relationships. Talking will alert other users to be on the lookout for phishy emails.

Figure 4. Enhanced anti-phishing capabilities are available in Microsoft Office 365.

  • Deploy technology designed to block phishing emails—If users don’t receive the phishing email, they can’t act on it! Deploy technology that can help you catch phishing emails before they land in someone’s inbox. For instance, Office 365, one of the world’s largest email providers, offers a variety of protection against phishing attacks by default and through additional offerings such as Microsoft Advanced Threat Protection (ATP) anti-phishing. Importantly, Microsoft has both been advancing the anti-phishing capabilities of Office 365 (see Figure 4 above) and improving catch rates of phishing emails.

Get in touch

Reach out to Diana Kelley on LinkedIn or Twitter or Seema Kathuria on LinkedIn or Twitter and let them know what you’d like to see us cover as they talk about new security products and capabilities.

Also, bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Spear phishing campaigns—they’re sharper than you think appeared first on Microsoft Security.

Rethinking cyber learning—consider gamification

November 25th, 2019 No comments

As promised, I’m back with a follow-up to my recent post, Rethinking how we learn security, on how we need modernize the learning experience for cybersecurity professionals by gamifying training to make learning fun. Some of you may have attended the recent Microsoft Ignite events in Orlando and Paris. I missed the conferences (ironically, due to attending a cybersecurity certification boot camp) but heard great things about the Microsoft/Circadence joint Into the Breach capture the flag exercise.

If you missed Ignite, we’re planning several additional Microsoft Ignite The Tour events around the world, where you’ll be able to try your hand at this capture the flag experience. Look for me at the Washington, DC event in early February.

In the meantime, due to the great feedback I received from my previous blog—which I do really appreciate, especially if you have ideas for how we should tackle the shortage of cyber professionals—I’ll be digging deeper into the mechanics of learning to understand what it really takes to learn cyber in today’s evolving landscape.

Today, I want to address the important questions of how a new employee could actually ramp up their learning, and how employers can prepare employees for success and track the efficacy of the learning curriculum. Once again, I’m pleased to share this post with Keenan Skelly, chief evangelist at Boulder, Colorado-based Circadence.

Here are some of some of her recommendations from our Q&A:

Q: Keenan, in our last blog, you discussed Circadence’s “Project Ares” cyber learning platform. How do new cyber practitioners get started on Project Ares?

A: The way that Project Ares is set up allows for a user to acquire a variety of different skill levels when launched. It’s important to understand what kind of work roles you’re looking to learn about as a user as well as what kinds of tools you’re looking to understand better before you get started on Project Ares. For example, if I were to take some of my Girls Who Code or Cyber Patriot students and put them into the platform, I would probably have them start in the Battle School. This is where they’re going to learn about basic cybersecurity fundamentals such as ports and protocols, regular expressions, and the cyber kill chain. Then they can transition into Battle Rooms, where they’ll start to learn about very specific tools, tactics, and procedures or TTPs, for a variety of different work roles. If you’re a much more skilled cyber ninja, however, you can probably go ahead and get right into Missions, but we do recommend that everyone who comes into Project Ares does some work in the Battle Rooms first, specifically if they are trying to learn a tool or a skill for their work role.

Project Ares also has a couple of different routes that an expert or an enterprising cybersecurity professional can come into that’s really focused more on their role. For example, we have an assessments area based entirely on the work role. This aligns to the NIST framework and the NICE cybersecurity work roles. For example, if you’re a network defender, you can come into that assessment pathway and have steps laid out before you to identify your skill level in that role as you see below:

Assessment pathway.

Q: What areas within Project Ares do you recommend for enterprise cyber professionals to train against role-based job functions and prepare for cyber certifications?

A: You might start with something simple like understanding very basic things about your work role through a questionnaire in the Battle School arena as seen in the illustrations below. You may then move into a couple of Battle Rooms that tease out very detailed skills in tools that you would be using for that role. And then eventually you’ll get to go into a mission by yourself, and potentially a mission with your entire team to really certify that you are capable in that work role. All this practice helps prepare professionals to take official cyber certifications and exams.

Battle School questionnaire.

Battle School mission.

Q: Describe some of the gamification elements in Project Ares and share how it enhances cyber learning.

A: One of the best things about Project Ares is gamification. Everyone loves to play games, whether it’s on your phone playing Angry Birds, or on your computer or gaming console. So we really tried to put a lot of gaming elements inside Project Ares. Since everything is scored within Project Ares, everything you do from learning about ports and protocols, to battle rooms and missions, gives you experience points. Experience points add up to skill badges. All these things make learning more fun for the user. For example, if you’re a defender, you might have skill badges in infrastructure, network design, network defense, etc. And the way Project Ares is set up, once you have a certain combination of those skill badges you can earn a work role achievement certificate within Project Ares.

This kind of thing is taken very much from Call of Duty and other types of games where you can really build up your skills by doing a very specific skill-based activity and earn points towards badges. One of the other things that is great about Project Ares is it’s quite immersive. For example, Missions allows a user to come into a specific cyber situation or cyber response situation (e.g., water treatment plant cyberattack) and have multimedia effects that demonstrate what is going—very much reflective of that cool guy video look. Being able to talk through challenges in the exercises with our in-game advisor, Athena, adds another element to the learning experience as shown in the illustration below.

Athena was inspired by the trends of personal assistants like Cortana and other such AI-bots, which have been integrated into games. So things like chat bots, narrative storylines, and skill badges are super important for really immersing the individual in the process. It’s so much more fun, and easier to learn things in this way, as opposed to sitting through a static presentation or watching someone on a video and trying to learn the skill passively.

Athena—the in-game advisor.

Q: What kinds of insights and reporting capability can Project Ares deliver to cyber team supervisors and C-Suite leaders to help them assessing cyber readiness?

A: Project Ares offers a couple great features that are good for managers, all the way up to the C-Suite, who are trying to understand how their cybersecurity team is doing. The first one is called Project Ares Trainer View. This is where a supervisor or manager can jump into the Project Ares environment, with the students or with the enterprise team members, and observe in a couple of different ways.

The instructor or the manager can jump into the environment as Athena, so the user doesn’t know that they are there. They can then provide additional insight or help that is needed to a student. A supervisor or leader can also jump in as the opponent, which gives them the ability to see someone who is just breezing by everything and maybe make it a little more challenging. Or they can just observe and leave comments for the individuals. This piece is really helpful when we’re talking about managers who are looking to understand their team’s skill level in much more detail.

The other piece of this is a product we have coming out soon called Dendrite—an analytics tool that looks at everything that happens at Project Ares. We record all the key strokes and chats a user had with Athena or any with other team members while in a mission or battle room. Cyber team leads can then see what’s going on. Users can see what they’re doing well, and not doing well. This feedback can be provided up to the manager level, the senior manager level, and even to the C-Suite level to demonstrate exactly where that individual is in their particular skill path. It helps the cyber team leads understand what tools are being used appropriately and which tools are not being used appropriately.

For example, if you’re a financial institution and you paid quite a bit of money for Tanium, but upon viewing tool use in Dendrite, you find that no one is using it. It might prompt you to rethink your strategy on how to use tools in your organization or look at how you train your folks to use those tools. These types of insights are absolutely critical if you want to understand the best way to grow the individual in cybersecurity and make sure they’re really on top of their game.

The Dendrite assessment and analysis solution.

Q: How can non-technical employees improve their cyber readiness?

A: At Circadence, we don’t just provide learning capabilities for advanced cyber warriors. For mid-range people just coming into the technical side of cybersecurity, we have an entire learning path that starts with a product called inCyt. Now, inCyt is a very fun browser-based game of strategy where players have some hackable devices they must protect—like operating systems and phones. Meanwhile, your opponent has the same objective: protect their devices from attacks. Players continually hack each other by gathering intel on their opponent and then launching different cyberattacks. While they’re doing this, players get a fundamental understanding of the cyber kill chain. They learn things like what reconnaissance means to a hacker, what weaponizing means to a hacker, what deploying that weapon means to a hacker, so they can start to recognize that behavior in their everyday interactions online.

Some people ask why this is important and I always say, “I used to be a bomb technician, and there is no possible way I could defuse an IED or nuclear weapon without understanding how those things are put together.” It’s the same kind of concept.

It’s impossible to assume that someone is going to learn cyber awareness by answering some questions or watching a five-minute phishing tutorial after they have already clicked a link in a suspicious email. Those are very reactive ways of learning cyber. inCyt is very proactive. And we want to teach you in-depth understanding of what to look for, not just for phishing but for all the attacks we’re susceptible to. inCyt is also being used by some of our customers as a preliminary gate track for those who are interested in cybersecurity. So if you demonstrate a very high aptitude within inCyt, we would send you over to our CyberBridge portal where you can start learning some of the basics of cybersecurity to see if it might be the right field for you. Within our CyberBridge access management portal, you can then go into Project Ares Academy, which is just a lighter version of Project Ares.

Professional and Enterprise licenses in Project Ares pave more intricate learning pathways for people to advance in learning, from novice to expert cyber defender. You’ll be able to track all metrics of where you started, how far you came, what kind of skill path you’re on, and what kind of skill path you want to be on. Very crucial items for your own work role pathway.

How to close the cybersecurity talent gap

Keenan’s perspective and the solution offered by Project Ares really helps to understand how to train security professionals and give them the hands-on experience they require and want. We’re in interesting times, right? With innovations in machine learning and artificial intelligence (AI), we’re increasingly able to pivot from reactive cyber defense to get more predictive. Still, right now we’re facing a cybersecurity talent gap of up to 4 million people, depending on which analyst group you follow. The only way that we’re going to get folks interested in cybersecurity is to make it exactly what we have been talking about: a career-long opportunity to learn.

Make it something that they can attain, they can grow in, and see themselves going from a novice to a leader in an organization. This is tough right now because there are relatively few cybersecurity operators compared to demand, and the operators on the front lines are subject to burnout. With uncertain and undefined career paths beyond tactical SecOps, what is there to look forward to?

We need to get better as a community in cybersecurity, not only protect the cybersecurity defenders that we have already, but also help to bring in new cybersecurity defenders and offenders who are really going to push the boundaries of where we’re at today. This is where we have an excellent and transformational opportunity to introduce more immersive and gamified learning to improve the learning experience and put our people in a position to succeed.

Learn more

To learn more about how to close the cybersecurity talent gap, read the e-book: CISO essentials: How to optimize recruiting while strengthening cybersecurity. For more information on Microsoft intelligence security solutions, see Achieve an optimal state of Zero Trust.

You can also watch my full interview with Keenan.

Bookmark the Security blog to keep up with our expert coverage on security matters and follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Rethinking cyber learning—consider gamification appeared first on Microsoft Security.

Machine learning vs. social engineering

Machine learning is a key driver in the constant evolution of security technologies at Microsoft. Machine learning allows Microsoft 365 to scale next-gen protection capabilities and enhance cloud-based, real-time blocking of new and unknown threats. Just in the last few months, machine learning has helped us to protect hundreds of thousands of customers against ransomware, banking Trojan, and coin miner malware outbreaks.

But how does machine learning stack up against social engineering attacks?

Social engineering gives cybercriminals a way to get into systems and slip through defenses. Security investments, including the integration of advanced threat protection services in Windows, Office 365, and Enterprise Mobility + Security into Microsoft 365, have significantly raised the cost of attacks. The hardening of Windows 10 and Windows 10 in S mode, the advancement of browser security in Microsoft Edge, and the integrated stack of endpoint protection platform (EPP) and endpoint detection and response (EDR) capabilities in Windows Defender Advanced Threat Protection (Windows Defender ATP) further raise the bar in security. Attackers intent on overcoming these defenses to compromise devices are increasingly reliant on social engineering, banking on the susceptibility of users to open the gate to their devices.

Modern social engineering attacks use non-portable executable (PE) files like malicious scripts and macro-laced documents, typically in combination with social engineering lures. Every month, Windows Defender AV detects non-PE threats on over 10 million machines. These threats may be delivered as email attachments, through drive-by web downloads, removable drives, browser exploits, etc. The most common non-PE threat file types are JavaScript and VBScript.

Figure 1. Ten most prevalent non-PE threat file types encountered by Windows Defender AV

Non-PE threats are typically used as intermediary downloaders designed to deliver more dangerous executable malware payloads. Due to their flexibility, non-PE files are also used in various stages of the attack chain, including lateral movement and establishing fileless persistence. Machine learning allows us to scale protection against these threats in real-time, often protecting the first victim (patient zero).

Catching social engineering campaigns big and small

In mid-May, a small-scale, targeted spam campaign started distributing spear phishing emails that spoofed a landscaping business in Calgary, Canada. The attack was observed targeting less than 100 machines, mostly located in Canada. The spear phishing emails asked target victims to review an attached PDF document.

When opened, the PDF document presents itself as a secure document that requires action a very common social engineering technique used in enterprise phishing attacks. To view the supposed secure document, the target victim is instructed to click a link within the PDF, which opens a malicious website with a sign-in screen that asks for enterprise credentials.

Phished credentials can then be used for further attacks, including CEO fraud, additional spam campaigns, or remote access to the network for data theft or ransomware. Our machine learning blocked the PDF file as malware (Trojan:Script/Cloxer.A!cl) from the get-go, helping prevent the attack from succeeding.

Figure 2. Phishing email campaign with PDF attachment

Beyond targeted credential phishing attacks, we commonly see large-scale malware campaigns that use emails with archive attachments containing malicious VBScript or JavaScript files. These emails typically masquerade as an outstanding invoice, package delivery, or parking ticket, and instruct targets of the attack to refer to the attachment for more details. If the target opens the archive and runs the script, the malware typically downloads and runs further threats like ransomware or coin miners.

Figure 3. Typical social engineering email campaign with an archive attachment containing a malicious script

Malware campaigns like these, whether limited and targeted or large-scale and random, occur frequently. Attackers go to great lengths to avoid detection by heavily obfuscating code and modifying their attack code for each spam wave. Traditional methods of manually writing signatures identifying patterns in malware cannot effectively stop these attacks. The power of machine learning is that it is scalable and can be powerful enough to detect noisy, massive campaigns, but also specific enough to detect targeted attacks with very few signals. This flexibility means that we can stop a wide range of modern attacks automatically at the onset.

Machine learning models zero in on non-executable file types

To fight social engineering attacks, we build and train specialized machine learning models that are designed for specific file types.

Building high-quality specialized models requires good features for describing each file. For each file type, the full contents of hundreds of thousands of files are analyzed using large-scale distributed computing. Using machine learning, the best features that describe the content of each file type are selected. These features are deployed to the Windows Defender AV client to assist in describing the content of each file to machine learning models.

In addition to these ML-learned features, the models leverage expert researcher-created features and other useful file metadata to describe content. Because these ML models are trained for specific file types, they can zone in on the metadata of these file types.

Figure 4. Specialized file type-specific client ML models are paired with heavier cloud ML models to classify and protect against malicious script files in real-time

When the Windows Defender AV client encounters an unknown file, lightweight local ML models search for suspicious characteristics in the files features. Metadata for suspicious files are sent to the cloud protection service, where an array of bigger ML classifiers evaluate the file in real-time.

In both the client and the cloud, specialized file-type ML classifiers add to generic ML models to create multiple layers of classifiers that detect a wide range of malicious behavior. In the backend, deep-learning neural network models identify malicious scripts based on their full file content and behavior during detonation in a controlled sandbox. If a file is determined malicious, it is not allowed to run, preventing infection at the onset.

File type-specific ML classifiers are part of metadata-based ML models in the Windows Defender AV cloud protection service, which can make a verdict on suspicious files within a fraction of a second.

Figure 5. Layered machine learning models in Windows Defender ATP

File type-specific ML classifiers are also leveraged by ensemble models that learn and combine results from the whole array of cloud classifiers. This produces a comprehensive cloud-based machine learning stack that can protect against script-based attacks, including zero-day malware and highly targeted attacks. For example, the targeted phishing attack in mid-May was caught by a specialized PDF client-side machine learning model, as well as several cloud-based machine learning models, protecting customers in real-time.

Microsoft 365 threat protection powered by artificial intelligence and data sharing

Social engineering attacks that use non-portable executable (PE) threats are pervasive in todays threat landscape; the impact of combating these threats through machine learning is far-reaching.

Windows Defender AV combines local machine learning models, behavior-based detection algorithms, generics, and heuristics with a detonation system and powerful ML models in the cloud to provide real-time protection against polymorphic malware. Expert input from researchers, advanced technologies like Antimalware Scan Interface (AMSI), and rich intelligence from the Microsoft Intelligent Security Graph continue to enhance next-generation endpoint protection platform (EPP) capabilities in Windows Defender Advanced Threat Protection.

In addition to antivirus, components of Windows Defender ATPs interconnected security technologies defend against the multiple elements of social engineering attacks. Windows Defender SmartScreen in Microsoft Edge (also now available as a Google Chrome extension) blocks access to malicious URLs, such as those found in social engineering emails and documents. Network protection blocks malicious network communications, including those made by malicious scripts to download payloads. Attack surface reduction rules in Windows Defender Exploit Guard block Office-, script-, and email-based threats used in social engineering attacks. On the other hand, Windows Defender Application Control can block the installation of untrusted applications, including malware payloads of intermediary downloaders. These security solutions protect Windows 10 and Windows 10 in S mode from social engineering attacks.

Further, Windows Defender ATP endpoint detection and response (EDR) uses the power of machine learning and AMSI to unearth script-based attacks that live off the land. Windows Defender ATP allows security operations teams to detect and mitigate breaches and cyberattacks using advanced analytics and a rich detection library. With the April 2018 Update, automated investigation and advance hunting capabilities further enhance Windows Defender ATP. Sign up for a free trial.

Machine learning also powers Office 365 Advanced Threat Protection to detect non-PE attachments in social engineering spam campaigns that distribute malware or steal user credentials. This enhances the Office 365 ATP comprehensive and multi-layered solution to protect mailboxes, files, online storage, and applications against threats.

These and other technologies power Microsoft 365 threat protection to defend the modern workplace. In Windows 10 April 2018 Update, we enhanced signal sharing across advanced threat protection services in Windows, Office 365, and Enterprise Mobility + Security through the Microsoft Intelligent Security Graph. This integration enables these technologies to automatically update protection and detection and orchestrate remediation across Microsoft 365.

 

Gregory Ellison and Geoff McDonald
Windows Defender Research

 

 

 

 


Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft community and Windows Defender Security Intelligence.

Follow us on Twitter @WDSecurity and Facebook Windows Defender Security Intelligence.

Enhancing Office 365 Advanced Threat Protection with detonation-based heuristics and machine learning

Email, coupled with reliable social engineering techniques, continues to be one of the primary entry points for credential phishing, targeted attacks, and commodity malware like ransomware and, increasingly in the last few months, cryptocurrency miners.

Office 365 Advanced Threat Protection (ATP) uses a comprehensive and multi-layered solution to protect mailboxes, files, online storage, and applications against a wide range of threats. Machine learning technologies, powered by expert input from security researchers, automated systems, and threat intelligence, enable us to build and scale defenses that protect customers against threats in real-time.

Modern email attacks combine sophisticated social engineering techniques with malicious links or non-portable executable (PE) attachments like HTML or document files to distribute malware or steal user credentials. Attackers use non-PE file formats because these can be easily modified, obfuscated, and made polymorphic. These file types allow attackers to constantly tweak email campaigns to try slipping past security defenses. Every month, Office 365 ATP blocks more than 500,000 email messages that use malicious HTML and document files that open a website with malicious content.

Figure 1. Typical email attack chain

Detonation-based heuristics and machine learning

Attackers employ several techniques to evade file-based detection of attachments and blocking of malicious URLs. These techniques include multiple redirections, large dynamic and obfuscated scripts, HTML for tag manipulation, and others.

Office 365 ATP protects customers from unknown email threats in real-time by using intelligent systems that inspect attachments and links for malicious content. These automated systems include a robust detonation platform, heuristics, and machine learning models.

Detonation in controlled environments exposes thousands of signals about a file, including behaviors like dropped and downloaded files, registry manipulation for persistence and storing stolen information, outbound network connections, etc. The volume of detonated threats translate to millions of signals that need to be inspected. To scale protection, we employ machine learning technologies to sort through this massive amount of information and determine a verdict for analyzed files.

Machine learning models examine detonation artifacts along with various signals from the following:

  • Static code analysis
  • File structure anomaly
  • Phish brand impersonation
  • Threat intelligence
  • Anomaly-based heuristic detections from security researchers

Figure 2. Classifying unknown threats using detonation, heuristics, and machine learning

Our machine learning models are trained to find malicious content using hundreds of thousands of samples. These models use raw signals as features with small modifications to allow for grouping signals even when they occur in slightly different contexts. To further enhance detection, some models are built using three-gram models that use raw signals sorted by timestamps recorded during detonation. The three-gram models tend to be more sparse than raw signals, but they can act as mini-signatures that can then be scored. These types of models fill in some of the gaps, resulting in better coverage, with little impact to false positives.

Machine learning can capture and expose even uncommon threat behavior by using several technologies and dynamic featurization. Features like image similarity matching, domain reputation, web content extraction, and others enable machine learning to effectively separate malicious or suspicious behavior from the benign.

Figure 3. Machine learning expands on traditional detection capabilities

Over time, as our systems automatically process and make a verdict on millions of threats, these machine learning models will continue to improve. In the succeeding sections, well describe some interesting malware and phishing campaigns detected recently by Office 365 ATP machine learning models.

Phishing campaigns: Online banking credentials

One of the most common types of phishing attacks use HTML and document files to steal online banking credentials. Gaining access to online bank accounts is one of the easiest ways that attackers can profit from illicit activities.

The email messages typically mimic official correspondence from banks. Phishers have become very good at crafting phishing emails. They can target global banks but also localize email content for local banks.
The HTML or document attachment are designed to look like legitimate sign-in pages or forms. Online banking credentials and other sensitive information entered into these files or websites are sent to attackers. Office 365s machine learning models detect this behavior, among other signals, to determine that such attachments are malicious and block offending email messages.

Figure 4. Sample HTML files that mimic online banking sign in pages. (Click to enlarge)

Phishing campaigns: Cloud storage accounts

Another popular example of phishing campaigns uses HTML or document attachments to steal cloud storage or email account details. The email messages imply that the recipient has received a document hosted in a cloud storage service. In order to supposedly open the said document, the recipient has to enter the cloud storage or email user name and password.

This type of phishing is very rampant because gaining access to either email or cloud storage opens a lot of opportunities for attackers to access sensitive documents or compromise the victims other accounts.

Figure 5. Sample HTML files that pose as cloud storage sign in pages. (Click to enlarge)

Tax-themed phishing and malware attacks

Tax-themed social engineering attacks circulate year-round as cybercriminals take advantage of the different country and region tax schedules. These campaigns use various messages related to tax filing to convincer users to click a link or open an attachment. The social engineering messages may say the recipient is eligible for tax refund, confirm that tax payment has been completed, or declare that payments are overdue, among others.

For example, one campaign intercepted by Office 365 ATP using machine learning implied that the recipient has not completed tax filing and is due for penalty. The campaign targeted taxpayers in Colombia, where tax filing ended in October. The email message aimed to alarm taxpayers by suggesting that they have not filed their taxes.

Figure 6. Tax-themed email campaign targeting taxpayers in Colombia. The subject line translates to: You have been fined for not filing your income tax returns

The attachment is a .rar file containing an HTML file. The HTML file contains the logo of Direccin de Impuestos y Aduanas Nacionales (DIAN), the Colombianes tax and customs organization, and a link to download a file.

Figure 7. Social engineering document with a malicious link

The link points to a shortened URL hxxps://bit[.]ly/2IuYkcv that redirects to hxxp://dianmuiscaingreso[.]com/css/sanci%C3%B3n%20declaracion%20de%20renta.doc, which downloads a malicious document.

Figure 8: Malicious URL information

The malicious document carries a downloader macro code. When opened, Microsoft Word issues a security warning. In the document are instructions to Enable content, which executes the embedded malicious VBA code.

Figure 9: Malicious document with malicious macro code

If the victim falls for this social engineering attack, the macro code downloads and executes a file from hxxp://dianmuiscaingreso.com/css/w.jpg. The downloaded executable file (despite the file name) is a file injector and password-stealing malware detected by Windows Defender AV as Trojan:Win32/Tiggre!rfn.

Because Office 365 ATP machine learning detects the malicious attachment and blocks the email, the rest of the attack chain is stopped, protecting customers at the onset.

Artificial intelligence in Office 365 ATP

As threats rapidly evolve and become increasingly complex, we continuously invest in expanding capabilities in Office 365 Advanced Threat Protection to secure mailboxes from attacks. Using artificial intelligence and machine learning, Office 365 ATP can constantly scale coverage for unknown and emerging threats in-real time.

Office 365 ATPs machine learning models leverage Microsofts wide network of threat intelligence, as well as seasoned threat experts who have deep understanding of malware, cyberattacks, and attacker motivation, to combat a wide range of attacks.

This enhanced protection from Office 365 ATP contributes to and enriches the integrated Microsoft 365 threat protection, which provides intelligent, integrated, and secure solution for the modern workplace. Microsoft 365 combines the benefits and security technologies of Office 365, Windows, and Enterprise Mobility Suite (EMS) platforms.

Office 365 ATP also shares threat signals to the Microsoft Intelligent Security Graph, which uses advanced analytics to link threat intelligence and security signals across Office 365, the Windows Defender ATP stack of defenses, and other sensors. For example, when a malicious file is detected by Office 365 ATP, that threat can also be blocked on endpoints protected by Windows Defender ATP and vice versa. Connecting security data and systems allows Microsoft security technologies like Office 365 ATP to continuously improve threat protection, detection, and response.

 

 

Office 365 Threat Research

Digging deep for PLATINUM

There is no shortage of headlines about cybercriminals launching large-scale attacks against organizations. For us, the activity groups that pose the most danger are the ones who selectively target organizations and desire to stay undetected, protect their investment, and maximize their ROI. That’s what motivated us – the Windows Defender Advanced Threat Hunting team, known as hunters – when we recently discovered a novel technique being used by one such activity group.

We have code named this group PLATINUM, following our internal practice of assigning rogue actors chemical element names. Based on our investigations, we know PLATINUM has been active since 2009 and primarily targets governmental organizations, defense institutes, intelligence agencies, and telecommunication providers in South and Southeast Asia. The group has gone to great lengths to develop covert techniques that allow them to conduct cyber-espionage campaigns for years without being detected.

Uncovering these kinds of techniques is true detective work, and finding them in the wild is a challenge, but with the wealth of anonymized information we can utilize from over 1 billion Windows devices, a broad spectrum of services, Microsoft’s intelligent security graph as well as advanced analytics and machine algorithms to surface suspicious behaviors, Microsoft is in the best position to do so.

Digging up the nugget

Through our advanced and persistent hunting, we discovered PLATINUM is using hotpatching as a technique to attempt to cloak a backdoor they use. Using hotpatching in the malicious context has been theorized [1], [2], but has not been observed in the wild before. Finding such techniques is a focus of the Microsoft APT hunter team, and we want to provide some brief insights on how the team dug up this PLATINUM “nugget”.

In the first part of this methodology, a hunter carves out some rough data sets from existing information and data that can be further analyzed. This could be based on rough heuristics, such as looking for files with high entropy, that were first observed recently, and that are confined to a geographic region that fits the profile of the activity group being investigated.

Carving the data still yields large data sets that can’t be manually analyzed, and advanced threat analytics can help in sorting through the data for meaningful information in the second step. Graph inferences through the Microsoft intelligent security graph can bubble pieces of information to the top of the queue for a hunter to choose from. In the PLATINUM investigation, we identified 31 files.

Lastly, the hunter works directly with the resulting set. During this stage of the PLATINUM investigation, a hunter found a file with unusual string (“.hotp1”). The hunter’s experience and intuition drove him to dig deeper. In this case, that further investigation led us to the malicious use of hotpatching by this activity group and the “nugget” was uncovered.

Deconstructing the attack

So what is hotpatching? Hotpatching is a previously supported OS feature for installing updates without having to reboot or restart a process. It requires administrator-level permissions, and at a high level, a hotpatcher can transparently apply patches to executables and DLLs in actively running processes.

Using hotpatching in a malicious context is a technique that can be used to avoid being detected, as many antimalware solutions monitor non-system processes for regular injection methods, such as CreateRemoteThread. Hotpatching originally shipped with Windows Server 2003 and was used to ship 10 patches to Windows Server 2003. Windows 10, our most secure operating system ever, is not susceptible to this and many other techniques and attack vectors.

What this means in practical terms is that PLATINUM was able to abuse this feature to hide their backdoor from the behavioral sensors of many host security products. We first observed a sample employing the hotpatching technique on a machine in Malaysia. This allowed PLATINUM to gain persistent access to the networks of companies it targeted and victimized over a long period without being detected.

Thwarting the bad guys

The Microsoft APT hunter team actively tracks activity groups like PLATINUM. We proactively identify these groups and the techniques they use and work to address vulnerabilities and implement security mitigations. The team builds detections and threat intelligence that are utilized by many of our products and services. Beta users of Windows Defender ATP can take advantage of this additional layer of protection and intelligence for a broad set of activity groups.

We’ve included a more technical exploration of  our research and detection of the hotpatching technique in the remainder of this blog.

You can also see a closer look at the PLATINUM activity group in our report PLATINUM: Targeted attacks in South and Southeast Asia. Windows Defender Advanced Threat Protection beta and preview users can also find the report, along with other APT activity group reports, in the Windows Defender ATP portal.

We continue to dig for PLATINUM.

The Windows Defender Advanced Threat Hunting Team

Hotpatching – a case study

We first observed the sample (Sample1) that is capable of utilizing hotpatching on a machine in Malaysia (which matches the general target profile of PLATINUM) on January 28, 2016 . The portable executable (PE) timestamp, which can be arbitrarily set by the adversary, dates back to August 9, 2015, while the unpacked version contains a PE timestamp for November 26, 2015.

It is a DLL that runs as a service and serves as an injector component of a backdoor. Interestingly, this sample not only supported the hotpatching technique described in this post, but was able to apply more common code-injection techniques, including the following, into common Windows processes (primarily targeting winlogon.exe, lsass.exe and svchost.exe):

  • CreateRemoteThread
  • NtQueueApcThread to run an APC in a thread in the target process
  • RtlCreatUserThread
  • NtCreateThreadEx

Hotpatching technique

For hotpatching, the sample goes through the following steps:

  1. It patches the loader with a proper hotpatch to treat injected DLLs with execute page permissions. This step is required for DLLs loaded from memory (in an attempt to further conceal the malicious code).
  2. The backdoor is injected into svchost using the hotpatch API.

Patching the loader is done by creating a section named “knowndllsmstbl.dll”. This DLL does not reside on-disk, but is rather treated as a cached DLL by the session manager.

It then proceeds to write a PE file within that section. The PE file will have one section (“.hotp1 “) with the hotpatch header structure. This structure contains all the information necessary to perform the patching of the function “ntdll!LdrpMapViewOfSection” used by the loader, such that the loader will treat created sections as PAGE_EXECUTE_READWRITE instead of PAGE_READWRITE. The patch is successfully applied by invoking NtSetSystemInformation.

The malware builds the information describing the first patch

Figure 1: The malware builds the information describing the first patch

 

The highlighted "push 4" is patched to "push 0x40", meaning that the parameter for the following API call NtMapViewOfSection is changed from PAGE_READWRITE to PAGE_EXECUTE_READWRITE.

Figure 2: The highlighted “push 4″ is patched to “push 0x40″, meaning that the parameter for the following API call NtMapViewOfSection is changed from PAGE_READWRITE to PAGE_EXECUTE_READWRITE.

Now that the memory permission issue has been solved, the injector can proceed with injecting the malicious DLL into svchost. Again, it creates a (now executable) section named “knowndllsfgrps.dll” and invokes NtSetSystemInformation, causing the final payload to be loaded and executed within the target process (svchost).

Trying to hide the payload using hotpatching also falls in line with the last functional insights we have on the sample. It seems to have an expiry date of January 15, 2017 – at that point in time, the DLL will no longer perform the injection, but rather execute another PLATINUM implant:

C:program filesWindows JournalTemplatesCpljnwmon.exe –ua

This implant may be related to an uninstall routine. Note that we observed the sample last on the machine on September 3, 2015, which may indicate PLATINUM pulled the trigger earlier.

 


 

[1] http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Sotirov.pdf

[2] https://www.yumpu.com/en/document/view/14255220/alexsyscan13

Digging deep for PLATINUM

There is no shortage of headlines about cybercriminals launching large-scale attacks against organizations. For us, the activity groups that pose the most danger are the ones who selectively target organizations and desire to stay undetected, protect their investment, and maximize their ROI. That’s what motivated us – the Windows Defender Advanced Threat Hunting team, known as hunters – when we recently discovered a novel technique being used by one such activity group.

We have code named this group PLATINUM, following our internal practice of assigning rogue actors chemical element names. Based on our investigations, we know PLATINUM has been active since 2009 and primarily targets governmental organizations, defense institutes, intelligence agencies, and telecommunication providers in South and Southeast Asia. The group has gone to great lengths to develop covert techniques that allow them to conduct cyber-espionage campaigns for years without being detected.

Uncovering these kinds of techniques is true detective work, and finding them in the wild is a challenge, but with the wealth of anonymized information we can utilize from over 1 billion Windows devices, a broad spectrum of services, Microsoft’s intelligent security graph as well as advanced analytics and machine algorithms to surface suspicious behaviors, Microsoft is in the best position to do so.

Digging up the nugget

Through our advanced and persistent hunting, we discovered PLATINUM is using hotpatching as a technique to attempt to cloak a backdoor they use. Using hotpatching in the malicious context has been theorized [1], [2], but has not been observed in the wild before. Finding such techniques is a focus of the Microsoft APT hunter team, and we want to provide some brief insights on how the team dug up this PLATINUM “nugget”.

In the first part of this methodology, a hunter carves out some rough data sets from existing information and data that can be further analyzed. This could be based on rough heuristics, such as looking for files with high entropy, that were first observed recently, and that are confined to a geographic region that fits the profile of the activity group being investigated.

Carving the data still yields large data sets that can’t be manually analyzed, and advanced threat analytics can help in sorting through the data for meaningful information in the second step. Graph inferences through the Microsoft intelligent security graph can bubble pieces of information to the top of the queue for a hunter to choose from. In the PLATINUM investigation, we identified 31 files.

Lastly, the hunter works directly with the resulting set. During this stage of the PLATINUM investigation, a hunter found a file with unusual string (“.hotp1”). The hunter’s experience and intuition drove him to dig deeper. In this case, that further investigation led us to the malicious use of hotpatching by this activity group and the “nugget” was uncovered.

Deconstructing the attack

So what is hotpatching? Hotpatching is a previously supported OS feature for installing updates without having to reboot or restart a process. It requires administrator-level permissions, and at a high level, a hotpatcher can transparently apply patches to executables and DLLs in actively running processes.

Using hotpatching in a malicious context is a technique that can be used to avoid being detected, as many antimalware solutions monitor non-system processes for regular injection methods, such as CreateRemoteThread. Hotpatching originally shipped with Windows Server 2003 and was used to ship 10 patches to Windows Server 2003. Windows 10, our most secure operating system ever, is not susceptible to this and many other techniques and attack vectors.

What this means in practical terms is that PLATINUM was able to abuse this feature to hide their backdoor from the behavioral sensors of many host security products. We first observed a sample employing the hotpatching technique on a machine in Malaysia. This allowed PLATINUM to gain persistent access to the networks of companies it targeted and victimized over a long period without being detected.

Thwarting the bad guys

The Microsoft APT hunter team actively tracks activity groups like PLATINUM. We proactively identify these groups and the techniques they use and work to address vulnerabilities and implement security mitigations. The team builds detections and threat intelligence that are utilized by many of our products and services. Beta users of Windows Defender ATP can take advantage of this additional layer of protection and intelligence for a broad set of activity groups.

We’ve included a more technical exploration of  our research and detection of the hotpatching technique in the remainder of this blog.

You can also see a closer look at the PLATINUM activity group in our report PLATINUM: Targeted attacks in South and Southeast Asia. Windows Defender Advanced Threat Protection beta and preview users can also find the report, along with other APT activity group reports, in the Windows Defender ATP portal.

We continue to dig for PLATINUM.

The Windows Defender Advanced Threat Hunting Team

Hotpatching – a case study

We first observed the sample (Sample1) that is capable of utilizing hotpatching on a machine in Malaysia (which matches the general target profile of PLATINUM) on January 28, 2016 . The portable executable (PE) timestamp, which can be arbitrarily set by the adversary, dates back to August 9, 2015, while the unpacked version contains a PE timestamp for November 26, 2015.

It is a DLL that runs as a service and serves as an injector component of a backdoor. Interestingly, this sample not only supported the hotpatching technique described in this post, but was able to apply more common code-injection techniques, including the following, into common Windows processes (primarily targeting winlogon.exe, lsass.exe and svchost.exe):

  • CreateRemoteThread
  • NtQueueApcThread to run an APC in a thread in the target process
  • RtlCreatUserThread
  • NtCreateThreadEx

Hotpatching technique

For hotpatching, the sample goes through the following steps:

  1. It patches the loader with a proper hotpatch to treat injected DLLs with execute page permissions. This step is required for DLLs loaded from memory (in an attempt to further conceal the malicious code).
  2. The backdoor is injected into svchost using the hotpatch API.

Patching the loader is done by creating a section named “knowndllsmstbl.dll”. This DLL does not reside on-disk, but is rather treated as a cached DLL by the session manager.

It then proceeds to write a PE file within that section. The PE file will have one section (“.hotp1 “) with the hotpatch header structure. This structure contains all the information necessary to perform the patching of the function “ntdll!LdrpMapViewOfSection” used by the loader, such that the loader will treat created sections as PAGE_EXECUTE_READWRITE instead of PAGE_READWRITE. The patch is successfully applied by invoking NtSetSystemInformation.

The malware builds the information describing the first patch

Figure 1: The malware builds the information describing the first patch

 

The highlighted "push 4" is patched to "push 0x40", meaning that the parameter for the following API call NtMapViewOfSection is changed from PAGE_READWRITE to PAGE_EXECUTE_READWRITE.

Figure 2: The highlighted “push 4″ is patched to “push 0x40″, meaning that the parameter for the following API call NtMapViewOfSection is changed from PAGE_READWRITE to PAGE_EXECUTE_READWRITE.

Now that the memory permission issue has been solved, the injector can proceed with injecting the malicious DLL into svchost. Again, it creates a (now executable) section named “knowndllsfgrps.dll” and invokes NtSetSystemInformation, causing the final payload to be loaded and executed within the target process (svchost).

Trying to hide the payload using hotpatching also falls in line with the last functional insights we have on the sample. It seems to have an expiry date of January 15, 2017 – at that point in time, the DLL will no longer perform the injection, but rather execute another PLATINUM implant:

C:program filesWindows JournalTemplatesCpljnwmon.exe –ua

This implant may be related to an uninstall routine. Note that we observed the sample last on the machine on September 3, 2015, which may indicate PLATINUM pulled the trigger earlier.

 


 

[1] http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Sotirov.pdf

[2] https://www.yumpu.com/en/document/view/14255220/alexsyscan13

HOW TO: Report the Microsoft phone scam

September 18th, 2014 No comments

If someone calls you from Microsoft technical support and offers to help you fix your computer, mobile phone, or tablet, this is a scam designed to install malicious software on your computer, steal your personal information, or both.

Do not trust unsolicited calls. Do not provide any personal information.

You can report this scam to the following authorities:

Whenever you receive a phone call or see a pop-up window on your PC and feel uncertain whether it is from someone at Microsoft, don’t take the risk. Reach out directly to one of our technical support experts dedicated to helping you at the Microsoft Answer Desk. Or you can simply call us at 1-800-426-9400 or one of our customer service phone numbers for people located around the world. 

HOW TO: Report the Microsoft phone scam

September 18th, 2014 No comments

If someone calls you from Microsoft technical support and offers to help you fix your computer, mobile phone, or tablet, this is a scam designed to install malicious software on your computer, steal your personal information, or both.

Do not trust unsolicited calls. Do not provide any personal information.

You can report this scam to the following authorities:

Whenever you receive a phone call or see a pop-up window on your PC and feel uncertain whether it is from someone at Microsoft, don’t take the risk. Reach out directly to one of our technical support experts dedicated to helping you at the Microsoft Answer Desk. Or you can simply call us at 1-800-426-9400 or one of our customer service phone numbers for people located around the world.

Congratulations! You’ve won $800,000!!

Well, maybe not.

But that’s just one of the many ploys that scammers send in their relentless efforts to part people from their money or sensitive personal information like passwords and account numbers.

Microsoft is asking people to take a survey of their experience with online fraud—what kinds of scams they’ve encountered (including those on mobile devices and Facebook), how concerned they are about online or phone fraud, and what steps they take to protect themselves.

In 2012, Microsoft fielded its first such study, interviewing 1,000 US residents to understand their exposure to, and perception of, online fraud and scams.

Respondents reported having encountered roughly eight different scams on average, with these as the top four:

  • Scams that promise free things or coupons (44 percent)

  • Fake antivirus alerts that imitate real programs offering virus repair but that download malware instead (40 percent)

  • Phishing scams using fake messages that mimic those of trusted businesses to trick people into revealing personal information (39 percent)

  • Fraud that features a request for bank information or money upfront from someone (such as a “foreign prince”) who needs help transferring large sums of money for a cut of the total (39 percent)

In the new survey, we’re interested in how scams and responses to scams might have changed since 2012. Are there different scams? What are the most common? Where are they most often occurring—on mobile devices? On Facebook?

Results of our last survey showed that nearly everyone (97 percent) took steps to safeguard their computers, but more than half (52 percent) did nothing at all to protect their mobile devices. So we’re particularly interested to see if these numbers have changed. 

You can help us fight online scams and fraud by taking our survey.

We will release the results of the survey during National Cyber Security Awareness Month this October. Follow the hashtag #NCSAM to read the story.