Archive

Archive for the ‘IoT security’ Category

Rethinking IoT/OT Security to Mitigate Cyberthreats

August 26th, 2020 No comments

We live in an exciting time. We’re in the midst of the fourth industrial revolution—first steam, followed by electricity, then computers, and, now, the Internet of Things.

A few years ago, IoT seemed like a futuristic concept that was on the distant horizon. The idea that your fridge would be connected to the internet, constantly uploading and downloading data and ordering things on its own, like new filters or groceries, seemed laughable. Why would anyone want or need such a thing?

Now, IoT and other embedded and operational technologies (OT) are far more pervasive in our lives than anyone could have imagined. Robotics, chemical and pharmaceutical production, power generation, oil production, transportation, mining, healthcare devices, building management systems, and seemingly everything else is becoming part of a smart, interconnected, machine-learning powered system. Machines can now monitor themselves, diagnose problems, and then reconfigure and improve based on the data.

The threat is real

It’s an exciting time, but it’s also an alarming time, especially for CISOs (Chief Information Security Officers) working diligently to employ risk mitigation and keep their companies secure from cyberthreats. Billions of new IoT devices go online each year, and as these environments become more connected with digitization initiatives, their attack surfaces grow.

From consumer goods to manufacturing systems to municipal operations like the power grid, it all needs data protection. The threat is very real. Take the Mirai botnet hack, for example. 150,000 cameras hacked and turned into a botnet that blocked internet access for large portions of the US. We have also seen destructive and rapidly spreading ransomware attacks, like NotPetya, cripple manufacturing and port operations around the globe.  However, existing IT security solutions cannot solve those problems due to the lack of standardized network protocols for such devices and the inability to certify device-specific products and deploy them without impacting critical operations.  So, what exactly is the solution? What do people need to do to resolve the IoT security problem?

Working to solve this problem is why Microsoft has joined industry partners to create the Open Source Security Foundation as well as acquired IoT/OT security leader CyberX. This integration between CyberX’s IoT/OT-aware behavioral analytics platform and Azure unlocks the potential of unified security across converged IT and industrial networks. And, as a complement to the embedded, proactive IoT device security of Microsoft Azure Sphere, CyberX IoT/OT provides monitoring and threat detection for devices that have not yet upgraded to Azure Sphere security. Used together, CyberX and Azure Sphere can give you visibility to what’s happening in your environment while actively preventing exploitation of your connected equipment. The goal is to achieve the mission of securing every unmanaged device to help protect critical operations.

Both Microsoft and CyberX have managed to help protect a large number of enterprises around the world—including leading organizations in manufacturing, pharmaceuticals and healthcare, power utilities, oil and gas companies, data centers, and more, at a global scale.

This success is due to taking a completely different approach, an innovative solution that prioritizes ease of deployment and use—to provide a security solution custom-built for OT and industrial control systems. So, what do you need to do that?

Let’s sit in a plant. Imagine that the process keeps on running, so from an operational perspective, all is fine. But even if operations are moving smoothly, you don’t know if someone is trying to hack your systems, steal your IP, or disrupt your day-to-day processes—you wouldn’t know that until the processes are disrupted, and by then, it’s too late.

To catch these threats, you need to understand what you have, understand the process interaction, validate access to the resources, and understand root cause analysis from other breaches. From a technology perspective, to gain this level of understanding, you need automated and intelligent asset visibility, behavioral analytics capable of understanding OT/IoT behavior, vulnerability management, and threat hunting. To defend against these threats, you will want to deploy an IoT device security solution that implements critical security properties, including defense in-depth, error reporting, and renewable security, that will help keep your connected devices and equipment protected over time.

Where to go from here

For any business looking to learn more about IoT/OT security, a good place to start is by downloading CyberX’s global IoT/ICS risk report. This free report provides a data-driven analysis of vulnerabilities in our Internet of Things (IoT) and industrial control systems (ICS) infrastructure.

Based on data collected in the past 12 months from 1,821 production IoT/ICS networks—across a diverse mix of industries worldwide—the analysis was performed using passive, agentless monitoring with patented deep packet inspection (DPI) and Network Traffic Analysis (NTA). The data shows that IoT/ICS environments continue to be soft targets for adversaries, with security gaps in key areas such as:

  • Outdated operating systems
  • Unencrypted passwords
  • Remotely accessible devices
  • Unseen indicators of threats
  • Direct internet connections

To learn more about protecting your critical equipment and devices with layered and renewable security, we recommend reading The seven properties of highly secured devices. To understand how these properties are implemented in Azure Sphere, you can download The 19 best practices for Azure Sphere.

These are key resources for any businesses looking to increase their IoT security and help mitigate cyberthreats to their organization’s systems and data.

Learn more

Tackling the IoT security threat is a big, daunting project, but Microsoft is committed to helping solve them through innovation and development efforts that empower businesses across the globe to operate more safely and securely.

To learn more about Microsoft Security solutions visit our website.  Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

To learn more about protecting your critical equipment and devices with layered and renewable security, reach out to your Microsoft account team and we recommend reading The seven properties of highly secured devices.

The post Rethinking IoT/OT Security to Mitigate Cyberthreats appeared first on Microsoft Security.

Afternoon Cyber Tea: Cybersecurity & IoT: New risks and how to minimize them

July 2nd, 2020 No comments

Recently, Microsoft announced our acquisition of CyberX, a comprehensive network-based security platform with continuous threat monitoring and analytics. This solution builds upon our commitment to provide a unified IoT security solution that addresses connected devices spread across both industrial and IT environments and provides a trusted, easy-to-use platform for our customers and partners to build connected solutions – no matter where they are starting in their IoT journey.

Every year billions of new connected devices come online. These devices enable businesses to finetune operations, optimize processes, and develop analytics-based services. Organizations are clearly benefiting from IoT as shared in the IoT Signals research report produced by Microsoft. But while the benefit is great, we must not ignore the potential security risks. To talk about how companies can reduce their risk from connected devices, Dr. Andrea Little Limbago joined me on Cyber Tea with Ann Johnson.

Dr. Andrea Little Limbago is a cybersecurity researcher, quant analyst, and computational social scientist at Virtru. With a background in social science, Andera has a unique perspective that I think you’ll find interesting.

Andrea and I talked about the role of automation in attacks and defense and how privacy and security advocates can come together to accomplish their overlapping goals. We also talked about how to safeguard your organization when you can’t inventory all your IoT devices.

It isn’t just businesses that are investing in connected devices. If you have IoT devices in your home, Andrea offered some great advice for protecting your privacy and your data. Listen to Cybersecurity and IoT: New Risks and How to Minimize Them to hear our conversation.

Lack of visibility into the devices currently connected to the network is a widespread problem. Many organizations also struggle to manage security on existing devices. The acquisition of CyberX complements existing Azure IoT security capabilities. I’m excited because this helps our customers discover their existing IoT assets, and both manage and improve the security posture of those devices. Expect more innovative solutions as we continue to integrate CyberX into Microsoft’s IoT security portfolio.

What’s next

In this important cyber series, I talk with cybersecurity influencers about trends shaping the threat landscape and explore the risk and promise of systems powered by AI, Internet of Things (IoT), and other emerging tech.

You can listen to Afternoon Cyber Tea with Ann Johnson on:

§  Apple Podcasts—You can also download the episode by clicking the Episode Website link.

§  Podcast One—Includes option to subscribe, so you’re notified as soon as new episodes are available.

§  CISO Spotlight page—Listen alongside our CISO Spotlight episodes, where customers and security experts discuss similar topics such as Zero Trust, compliance, going passwordless, and more.

If you are interested in how businesses across the globe are benefiting from IoT, read IoT Signals, a research report produced by Microsoft.

In the meantime, bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. Or reach out to me on LinkedIn or Twitter if you have guest or topic suggestions.

The post Afternoon Cyber Tea: Cybersecurity & IoT: New risks and how to minimize them appeared first on Microsoft Security.

Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments

June 22nd, 2020 No comments

Today, we’re excited to announce that Microsoft has acquired CyberX, a comprehensive, network-based IoT security platform with continuous threat monitoring and sophisticated analytics that addresses IoT security in a holistic way across the enterprise. CyberX will complement the existing Azure IoT security capabilities, and extends to existing devices including those used in industrial IoT, operational technology, and infrastructure scenarios.

To learn more, head over to the official Microsoft blog.

The post Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments appeared first on Microsoft Security.

Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments

June 22nd, 2020 No comments

Today, we’re excited to announce that Microsoft has acquired CyberX, a comprehensive, network-based IoT security platform with continuous threat monitoring and sophisticated analytics that addresses IoT security in a holistic way across the enterprise. CyberX will complement the existing Azure IoT security capabilities, and extends to existing devices including those used in industrial IoT, operational technology, and infrastructure scenarios.

To learn more, head over to the official Microsoft blog.

The post Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments appeared first on Microsoft Security.

Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments

June 22nd, 2020 No comments

Today, we’re excited to announce that Microsoft has acquired CyberX, a comprehensive, network-based IoT security platform with continuous threat monitoring and sophisticated analytics that addresses IoT security in a holistic way across the enterprise. CyberX will complement the existing Azure IoT security capabilities, and extends to existing devices including those used in industrial IoT, operational technology, and infrastructure scenarios.

To learn more, head over to the official Microsoft blog.

The post Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments appeared first on Microsoft Security.

Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments

June 22nd, 2020 No comments

Today, we’re excited to announce that Microsoft has acquired CyberX, a comprehensive, network-based IoT security platform with continuous threat monitoring and sophisticated analytics that addresses IoT security in a holistic way across the enterprise. CyberX will complement the existing Azure IoT security capabilities, and extends to existing devices including those used in industrial IoT, operational technology, and infrastructure scenarios.

To learn more, head over to the official Microsoft blog.

The post Microsoft acquires CyberX to accelerate and secure customers’ IoT deployments appeared first on Microsoft Security.

Managing cybersecurity like a business risks: Part 1—Modeling opportunities and threats

May 28th, 2020 No comments

In recent years, cybersecurity has been elevated to a C-suite and board-level concern. This is appropriate given the stakes. Data breaches can have significant impact on a company’s reputation and profits. But, although businesses now consider cyberattacks a business risk, management of cyber risks is still siloed in technology and often not assessed in terms of other business drivers. To properly manage cybersecurity as a business risk, we need to rethink how we define and report on them.

The blog series, “Managing cybersecurity like a business risk,” will dig into how to update the cybersecurity risk definition, reporting, and management to align with business drivers. In today’s post, I’ll talk about why we need to model both opportunities as well as threats when we evaluate cyber risks. In future blogs, I’ll dig into some reporting tools that businesses can use to keep business leaders informed.

Digital transformation brings both opportunities and threats

Technology innovations such as artificial intelligence (AI), the cloud, and the internet of things (IoT) have disrupted many industries. Much of this disruption has been positive for businesses and consumers alike. Organizations can better tailor products and services to targeted segments of the population, and businesses have seized on these opportunities to create new business categories or reinvent old ones.

These same technologies have also introduced new threats. Legacy companies risk losing loyal customers by exploiting new markets. Digital transformation can result in a financial loss if big bets don’t pay off. And of course, as those of us in cybersecurity know well, cybercriminals and other adversaries have exploited the expanded attack surface and the mountains of data we collect.

The threats and opportunities of technology decisions are intertwined, and increasingly they impact not just operations but the core business. Too often decisions about digital transformation are made without evaluating cyber risks. Security is brought in at the very end to protect assets that are exposed. Cyber risks are typically managed from a standpoint of loss aversion without accounting for the possible gains of new opportunities. This approach can result in companies being either too cautious or not cautious enough. To maximize digital transformation opportunities, companies need good information that helps them take calculated risks.

It starts with a SWOT analysis

Threats and opportunities are external forces that may be factors for a company and all its competitors. One way to determine how your company should respond is by also understanding your weaknesses and strengths, which are internal factors.

  • Strengths: Characteristics or aspects of the organization or product that give it a competitive edge.
  • Weaknesses: Characteristics or aspects of the organization or product that puts it at a disadvantage compared to the competition.
  • Opportunities: Market conditions that could be exploited for benefit.
  • Threats: Market conditions that could cause damage or harm.

To crystallize these concepts, let’s consider a hypothetical brick and mortar retailer in the U.K. that sells stylish maternity clothes at an affordable price. In Europe, online retail is big business. Companies like ASOS and Zalando are disrupting traditional fashion. If we apply a SWOT analysis to them, it might look something like this.

  • Strength: Stylish maternity clothes sold at an affordable price, loyal referral-based clientele.
  • Weakness: Only available through brick and mortar stores, lack technology infrastructure to quickly go online, and lack security controls.
  • Opportunity: There is a market for these clothes beyond the U.K.
  • Threats: Retailers are a target for cyberattacks, customers trends indicate they will shop less frequently at brick and mortar stores in the future.

For this company, there isn’t an obvious choice. The retailer needs to figure out a way to maintain the loyalty of its current customers while preparing for a world where in-person shopping decreases. Ideally the company can use its strengths to overcome its weaknesses and confront threats. For example, the company’s loyal clients that already refer a lot of business could be incented to refer business via online channels to grow business. The company may also recognize that building security controls into an online business from the ground up is critical and take advantage of its steady customer base to buy some time and do it right.

Threat modeling and opportunity modeling paired together can help better define the potential gains and losses of different approaches.

Opportunity and threat modeling

Many cybersecurity professionals are familiar with threat modeling, which essentially poses the following questions, as recommended by the Electronic Frontier Foundation.

  • What do you want to protect?
  • Who do you want to protect it from?
  • How likely is it that you will need to protect it?
  • How bad are the consequences if you fail?
  • How much trouble are you willing to go through in order to try to prevent those?

But once we’ve begun to consider not just the threats but the opportunities available in each business decision, it becomes clear that this approach misses half the equation. Missed opportunity is a risk that isn’t captured in threat modeling. This is where opportunity modeling becomes valuable. Some of my thinking around opportunity modeling was inspired by a talk by John Sherwood at SABSA, and he suggested the following questions to effectively model opportunity:

  • What is the value of the asset you want to protect?
  • What is the potential gain of the opportunity?
  • How likely is it that the opportunity will be realized?
  • How likely is it that a strength be exploited?

This gives us a framework to consider the risk from both a threat and opportunity standpoint. Our hypothetical retailer knows it wants to protect the revenue generated by the current customers and referral model, which is the first question on each model. The other questions help quantify the potential loss if threats materialize and the potential gains of opportunities are realized. The company can use this information to better understand the ratio of risk to reward.

It’s never easy to make big decisions in light of potential risks, but when decisions are informed by considering both the potential gains and potential losses, you can also better define a risk management strategy, including the types of controls you will need to mitigate your risk.

In my next post in the “Managing cybersecurity like a business risk” series, I’ll review some qualitative and quantitative tools you can use to manage risk.

Read more about risk management from SABSA.  To learn more about Microsoft security solutions visit our website. In the meantime, bookmark the Security blog to keep up with our expert coverage on security matters. Follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Managing cybersecurity like a business risks: Part 1—Modeling opportunities and threats appeared first on Microsoft Security.

Cybersecurity best practices to implement highly secured devices

May 20th, 2020 No comments

Almost three years ago, we published The Seven Properties of Highly Secured Devices, which introduced a new standard for IoT security and argued, based on an analysis of best-in-class devices, that seven properties must be present on every standalone device that connects to the internet in order to be considered secured. Azure Sphere, now generally available, is Microsoft’s entry into the market: a seven-properties-compliant, end-to-end product offering for building and deploying highly secured IoT devices.

Every connected device should be highly secured, even devices that seem simplistic, like a cactus watering sensor. The seven properties are always required. These details are captured in a new paper titled, Nineteen cybersecurity best practices used to implement the seven properties of highly secured devices in Azure Sphere. It focuses on why the seven properties are always required and describes best practices used to implement Azure Sphere. The paper provides detailed information about the architecture and implementation of Azure Sphere and discusses design decisions and trade-offs. We hope that the new paper can assist organizations and individuals in evaluating the measures used within Azure Sphere to improve the security of IoT devices. Companies may also want to use this paper as a reference, when assessing Azure Sphere or other IoT offerings.  In this blog post, we discuss one issue covered in the paper: why are the 7 properties always required?

Why are the seven properties applicable to every device that connects to the internet?

If an internet-connected device performs a non-critical function, why does it require all seven properties? Put differently, are the seven properties required only when a device might cause harm if it is hacked? Why would you still want to require an advanced CPU, a security subsystem, a hardware root of trust, and a set of services to secure a simple, innocuous device like a cactus water sensor?

Because any device can be the target of a hacker, and any hacked device can be weaponized.

Consider the Mirai botnet, a real-world example of IoT gone wrong. The Mirai botnet involved approximately 150,000 internet-enabled security cameras. The cameras were hacked and turned into a botnet that launched a distributed denial of service (DDoS) attack that took down internet access for a large portion of the eastern United States. For security experts analyzing this hack, the Mirai botnet was distressingly unsophisticated. It was also a relatively small-scale attack, considering that many IoT devices will sell more than 150,000 units.

Adding internet connectivity to a class of device means a single, remote attack can scale to hundreds of thousands or millions of devices. The ability to scale a single exploit to this degree is cause for reflection on the upheaval IoT brings to the marketplace. Once the decision is made to connect a device to the internet, that device has the potential to transform from a single-purpose device to a general-purpose computer capable of launching a DDoS attack against any target in the world. The Mirai botnet is also a demonstration that a manufacturer does not need to sell many devices to create the potential for a “weaponized” device.

IoT security is not only about “safety-critical” deployments. Any deployment of a connected device at scale requires the seven properties. In other words, the function, purpose, and cost of a device should not be the only considerations when deciding whether security is important.

The seven properties do not guarantee that a device will not be hacked. However, they greatly minimize certain classes of threats and make it possible to detect and respond when a hacker gains a toehold in a device ecosystem. If a device doesn’t have all seven, human practices must be implemented to compensate for the missing features. For example, without renewable security, a security incident will require disconnecting devices from the internet and then recalling those devices or dispatching people to manually patch every device that was attacked.

Implementation challenges

Some of the seven properties, such as a hardware-based root of trust and compartmentalization, require certain silicon features. Others, such as defense in-depth, require a certain software architecture as well as silicon features like the hardware-based root of trust. Finally, other properties, including renewable security, certificate-based authentication, and failure reporting, require not only silicon features and certain software architecture choices within the operating system, but also deep integration with cloud services. Piecing these critical pieces of infrastructure together is difficult and prone to errors. Ensuring that a device incorporates these properties could therefore increase its cost.

These challenges led us to believe the seven properties also created an opportunity for security-minded organizations to implement these properties as a platform, which would free device manufacturers to focus on product features, rather than security. Azure Sphere represents such a platform: the seven properties are designed and built into the product from the silicon up.

Best practices for implementing the seven properties

Based on our decades of experience researching and implementing secured products, we identified 19 best practices that were put into place as part of the Azure Sphere product. These best practices provide insight into why Azure Sphere sets such a high standard for security. Read the full paper, Nineteen cybersecurity best practices used to implement the seven properties of highly secured devices in Azure Sphere, for the in-depth discussion of each of these best practices and how they—along with the seven properties themselves—guided our design decisions.

We hope that the discussion of these best practices sheds some additional light on the large number of features the Azure Sphere team implemented to protect IoT devices. We also hope that this provides a new set of questions to consider in evaluating your own IoT solution. Azure Sphere will continue to innovate and build upon this foundation with more features that raise the bar in IoT security.

To read previous blogs on IoT security, visit our blog series:  https://www.microsoft.com/security/blog/iot-security/   Be sure to bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity

The post Cybersecurity best practices to implement highly secured devices appeared first on Microsoft Security.

Managing risk in today’s IoT landscape: not a one-and-done

April 28th, 2020 No comments

image for Halina's Blog Post_updated-BANNER

The reality of securing IoT over time

It’s difficult to imagine any aspect of everyday life that isn’t affected by the influence of connectivity. The number of businesses that are using IoT is growing at a fast pace. By 2021, approximately 94 percent of businesses will be using IoT. Connectivity empowers organizations to unlock the full potential of the Internet of Things (IoT)—but it also introduces new cybersecurity attack vectors that they didn’t need to think about before. The reality is, connectivity comes at a cost: attackers with a wide range of motivations and skills are on the hunt, eager to exploit vulnerabilities or weak links in IoT. What does it take to manage those risks?

The cybersecurity threat landscape is ever evolving so a solution’s protection must also evolve regularly in order to remain effective. Securing a device is neither a one-time action nor is it a problem that is solely technical in nature. Implementing robust security measures upfront is not enough—risks need to be mitigated not just once, but constantly and throughout the full lifespan of a device. Facing this threat landscape ultimately means acknowledging that organizations will have to confront the consequences of attacks and newfound vulnerabilities. The question is, how to manage those risks beyond the technical measures that are in place?

A holistic approach to minimizing risk

Securing IoT devices against cyberattacks requires a holistic approach that complements up-front technical measures with ongoing practices that allow organizations to evaluate risks and establish a set of actions and policies that minimize threats over time. Cybersecurity is a multi-dimensional issue that requires the provider of an IoT solution to take several variables into account—it is not just the technology, but also the people who create and manage a product and the processes and practices they put in place, that will determine how resilient it is.

With Azure Sphere, we provide our customers with a robust defense that utilizes the evidence and learnings documented in the Seven Properties of Highly Secured Devices. One of the properties, renewable security, ensures that a device can update to a more secure state even after it has been compromised. As the threat landscape evolves, renewable security also enables us to counter new attack vectors through updates. This is essential, but not sufficient on its own. Our technology investments are enhanced through similar investments in security assurance and risk management that permeate all levels of an organization. The following sections highlight three key elements of our holistic approach to IoT security: continuous evaluation of our security promise, leveraging the power of the security community, and combining cyber and organizational resilience. 

Continuous evaluation of our security promise

All cyberattacks fall somewhere on a spectrum of complexity. On one side of the spectrum are simple and opportunistic attacks. Examples are off-the-shelf malware or attempts to steal data such as credentials. These attacks are usually performed by attackers with limited resources. On the opposite side of the spectrum are threat actors that use highly sophisticated methods to target specific parts of the system. Attackers within this category usually have many resources and can pursue an attack over a longer period of time. Given the multitude of threats across this spectrum, it is important to keep in mind that they all have one thing in common: an attacker faces relatively low risk with potentially very large rewards.

Taking this into account, we believe that in order to protect our customers we need to practice being our own worst enemy. This means our goal is to discover any vulnerabilities before the bad guys do. One proven approach is to test our solution from the same perspective as an attacker. So-called “red teams” are designed to emulate the attacks of adversaries, whereas “purple teams” perform both attacking and defending to harden a product from within.

Our approach to red team exercises is to try to mimic the threat landscape that devices are actually facing. We do this multiple times a year and across the full Azure Sphere stack. This means that our customers benefit from the rigorous security testing of our platform and are able to focus on the security of their own applications. We work with the world’s most renowned security service providers to test our product with a real-world attacker mentality for an extended period of time and from multiple perspectives. In addition, we leverage the full power of Microsoft internal security expertise to conduct regular internal red and purple team exercises. The practice of constantly evaluating our defense and emulating the ever-evolving threat landscape is an important part of our security hygiene—allowing us to find vulnerabilities, update all devices, and mitigate incidents before they even happen.

Leveraging the power of the security community

Another approach to finding vulnerabilities before attackers do is to engage with the cybersecurity community through bounty programs. We encourage security researchers with an interest in Azure Sphere to search for any vulnerabilities and we reward them for it. While our approach to red team exercises ensures regular testing of how we secure Azure Sphere, we also believe in the advantages of the continual and diverse assessment by anyone who is interested, at any point in time.

Security researchers play a significant role in securing our billions of customers across Microsoft, and we encourage the responsible reporting of vulnerabilities based on our Coordinated Vulnerability Disclosure (CVD). We invite researchers from across the world to look for and report any vulnerability through our Microsoft Azure Bounty Program. Depending on the quality of submissions and the level of severity, we award successful reports with up to $40,000 USD. We believe that researchers should be rewarded competitively when they improve the security of our platform, and we maintain these important relationships for the benefit of our customers.

From a risk management perspective, both red and purple team exercises and bug bounties are helpful tools to minimize the risk of attacks. But what happens when an IoT solution provider is confronted with a newly discovered security vulnerability? Not every organization has a cybersecurity incident response plan in place, and 77 percent of businesses do not have a consistently deployed plan. Finding vulnerabilities is important, but it is equally important to prepare employees and equip the organization with processes and practices that allow for a quick and efficient resolution as soon as a vulnerability is found.

Combining cyber and organizational resilience

Securing IoT is not just about preventing attackers from getting in; it’s also about how to respond when they do. Once the technical barrier has been passed, it is the resilience of the organization that the device has to fall back on. Therefore, it is essential to have a plan in place that allows your team to quickly respond and restore security. There are countless possible considerations and moving parts that must all fit together seamlessly as part of a successful cybersecurity incident response. Every organization is different and there is no one-size-fits-all, but a good place to start is with industry best practices such as the National Institute of Standards and Technology (NIST) Computer Security Incident Handling Guide. Azure Sphere’s standard operating procedures are aligned with those guidelines, in addition to leveraging Microsoft battle-tested corporate infrastructure.

Microsoft Security Response Center (MSRC) has been at the front line of security response for more than twenty years. Over time we have learned what it means to successfully protect our customers from harm from vulnerabilities in our products, and we are able to rapidly drive back attacks against our cloud infrastructure. Security researchers and customers are provided with an easy way to report any vulnerabilities and MSRC best-in-class security experts are monitoring communications 24/7 to make sure we can fix an issue as soon as possible.

Your people are a critical asset—when they’re educated on how to respond when an incident occurs, their actions can make all the difference. In addition to MSRC capabilities that are available at any time, we require everyone involved in security incident response to undergo regular and extensive training. Trust is easy to build when things are going right. What really matters in the long term is how we build trust when things go wrong. Our security response practices have been defined with that in mind.

Our commitment to managing the risks you are facing

The world will be more connected than it has ever been, and we believe this requires a strong, holistic, and ongoing focus on cybersecurity. Defending against today’s and tomorrow’s IoT threat landscape is not a static game. It requires continual assessment of our promise to secure your IoT solutions, innovation that improves our defense over time, and working with you and the security community. As the threat landscape evolves, so will we. Azure Sphere’s mission is to empower every organization on the planet to connect and create secured and trustworthy IoT devices. When you choose Azure Sphere, you can rely on our team and Microsoft to manage your risk so that you can focus on the true business value of your IoT solutions and products.

If you are interested in learning more about how Azure Sphere can help you securely unlock your next IoT innovation:

The post Managing risk in today’s IoT landscape: not a one-and-done appeared first on Microsoft Security.

Afternoon Cyber Tea: Building operational resilience in a digital world

April 13th, 2020 No comments

Operational resiliency is a topic of rising importance in the security community. Unplanned events, much like the one we are facing today, are reminders of how organizations can be prepared to respond to a cyberattack. Ian Coldwell and I explored a variety of options in my episode of Afternoon Cyber Tea with Ann Johnson.

Ian Coldwell is a Kubernetes containers and cloud infrastructure specialist with a background in penetration testing and DevOps. In their role as a consultant, Ian has helped companies bridge the gaps between security and DevOps. It was a real pleasure to discuss what Ian has learned in these roles, and I think you’ll find our discussion valuable.

During our conversation, Ian and I talked about threat modeling and how to best protect your crown jewels. We also explored what it means to bring security into DevOps. Hint: it’s about more than just new tooling. And, we demystified Kubernetes. Do you wonder which projects are a good fit for Kubernetes, and which are not? Are you concerned about how to keep Kubernetes containers secure? Take a listen to Building operational resiliency in a digital work on Afternoon Cyber Tea with Ann Johnson for actionable advice that you can apply to your own SecDevOps organization.

What’s next

In this important cyber series, I talk with cybersecurity influencers about trends shaping the threat landscape in these unprecedented times, and explore the risk and promise of systems powered by artificial intelligence (AI), Internet of Things (IoT), and other emerging tech.

You can listen to Afternoon Cyber Tea with Ann Johnson on:

  • Apple Podcasts—You can also download the episode by clicking the Episode Website link.
  • Podcast One—Includes option to subscribe, so you’re notified as soon as new episodes are available.
  • CISO Spotlight page—Listen alongside our CISO Spotlight episodes, where customers and security experts discuss similar topics such as Zero Trust, compliance, going passwordless, and more.

In the meantime, bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. Or reach out to me on LinkedIn or Twitter if you have guest or topic suggestions.

The post Afternoon Cyber Tea: Building operational resilience in a digital world appeared first on Microsoft Security.