Archive

Archive for the ‘Microsoft Cloud App Security’ Category

Protecting your remote workforce from application-based attacks like consent phishing

July 8th, 2020 No comments

The global pandemic has dramatically shifted how people work. As a result, organizations around the world have scaled up cloud services to support collaboration and productivity from home. We’re also seeing more apps leverage Microsoft’s identity platform to ensure seamless access and integrated security as cloud app usage explodes, particularly in collaboration apps such as Zoom, Webex Teams, Box and Microsoft Teams. With increased cloud app usage and the shift to working from home, security and how employees access company resources are even more top of mind for companies.

While application use has accelerated and enabled employees to be productive remotely, attackers are looking at leveraging application-based attacks to gain unwarranted access to valuable data in cloud services. While you may be familiar with attacks focused on users, such as email phishing or credential compromise, application-based attacks, such as consent phishing, is another threat vector you must be aware of.  Today we wanted to share one of the ways application-based attacks can target the valuable data your organization cares about, and what you can do today to stay safe.

Consent phishing: An application-based threat to keep an eye on

Today developers are building apps by integrating user and organizational data from cloud platforms to enhance and personalize their experiences. These cloud platforms are rich in data but in turn have attracted malicious actors seeking to gain unwarranted access to this data. One such attack is consent phishing, where attackers trick users into granting a malicious app access to sensitive data or other resources. Instead of trying to steal the user’s password, an attacker is seeking permission for an attacker-controlled app to access valuable data.

While each attack tends to vary, the core steps usually look something like this:

  1. An attacker registers an app with an OAuth 2.0 provider, such as Azure Active Directory.
  2. The app is configured in a way that makes it seem trustworthy, like using the name of a popular product used in the same ecosystem.
  3. The attacker gets a link in front of users, which may be done through conventional email-based phishing, by compromising a non-malicious website, or other techniques.
  4. The user clicks the link and is shown an authentic consent prompt asking them to grant the malicious app permissions to data.
  5. If a user clicks accept, they will grant the app permissions to access sensitive data.
  6. The app gets an authorization code which it redeems for an access token, and potentially a refresh token.
  7. The access token is used to make API calls on behalf of the user.

If the user accepts, the attacker can gain access to their mail, forwarding rules, files, contacts, notes, profile and other sensitive data and resources.

An image of a Consent screen from a sample malicious app named “Risky App."

Consent screen from a sample malicious app named “Risky App”

How to protect your organization

At Microsoft, our integrated security solutions from identity and access management, device management, threat protection and cloud security enable us to evaluate and monitor trillions of signals to help identify malicious apps. From our signals, we’ve been able to identify and take measures to remediate malicious apps by disabling them and preventing users from accessing them. In some instances, we’ve also taken legal action to further protect our customers.

We’re also continuing to invest in ways to ensure our application ecosystem is secure by enabling customers to set policies on the types of apps users can consent to as well as highlighting apps that come from trusted publishers. While attackers will always persist, there are steps you can take to further protect your organization. Some best practices to follow include:

  • Educate your organization on consent phishing tactics:
    • Check for poor spelling and grammar. If an email message or the application’s consent screen has spelling and grammatical errors, it’s likely to be a suspicious application.
    • Keep a watchful eye on app names and domain URLs. Attackers like to spoof app names that make it appear to come from legitimate applications or companies but drive you to consent to a malicious app. Make sure you recognize the app name and domain URL before consenting to an application.
  • Promote and allow access to apps you trust:
    • Promote the use of applications that have been publisher verified. Publisher verification helps admins and end-users understand the authenticity of application developers. Over 660 applications by 390 publishers have been verified thus far.
    • Configure application consent policies by allowing users to only consent to specific applications you trust, such as application developed by your organization or from verified publishers.
  • Educate your organization on how our permissions and consent framework works:

The increased use of cloud applications has demonstrated the need to improve application security. At Microsoft, we’re committed to building capabilities that proactively protect you from malicious apps while giving you the tools to set policies that balance security and productivity. For additional best practices and safeguards review the Detect and Remediate Illicit Consent Grants in Office 365 and Five steps to securing your identity infrastructure.

Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Protecting your remote workforce from application-based attacks like consent phishing appeared first on Microsoft Security.

Modernizing the security operations center to better secure a remote workforce

June 22nd, 2020 No comments

The response to COVID-19 has required many security operations centers (SOCs) to rethink how they protect their organizations. With so many employees working remotely, IT groups are routing more traffic directly to cloud apps, rather than through the network. In this model, traditional network security controls aren’t enough. Endpoint signals and identity-based security matter more than ever.

Even under the best circumstances, managing and working in an SOC is stressful—and these aren’t normal times! We know you’re under a lot of pressure, with less visibility and concerns over balancing user productivity without compromising security. But we also know many of the changes companies have made to support remote work during this crisis will remain in place once the virus is gone—some have already announced more flexible and permanent remote work policies. In light of this new reality, the SOC will also need to adjust. In this blog, we’ve outlined some principles of the modern SOC which can guide that transition. You can also hear us discuss these concepts by viewing a replay of the 2020 Microsoft Virtual Security and Compliance Summit.

It’s a multi-cloud world

Odds are good your organization doesn’t use just one cloud. You may manage much of your infrastructure on Microsoft Azure, but you also probably use Amazon Web Services (AWS) or Google Cloud Platform (GCP) too. And when we say cloud, we don’t just mean infrastructure as a service (IaaS). We also mean development work on a platform as a service (PaaS) and software-as-a-service (SaaS) apps hosted in a cloud—although it’s not always clear which cloud it’s hosted on. Without visibility across all platforms where business information is stored and transacted, you don’t have a full view of your corporate security program and risk profile.

Although the major cloud service providers offer tools that let you monitor their environment extensively, you need a holistic view to correlate threats and assess how one threat may impact another resource. Solutions like Microsoft Cloud App Security give you tools to detect cloud apps and monitor and protect them, while Azure Sentinel collects and analyzes data across on-premises and in multiple clouds.

Visibility into all connected devices

As more employees use cloud apps and mobile devices for work, the traditional network security perimeter has lost relevance. This puts greater emphasis on endpoint monitoring and protection. But it goes beyond employee devices. There has been an explosion of the internet of things (IoT) across industries. The industrial internet of things (IIoT) and industrial control systems (ICS) provide yet another opportunity for bad actors to infiltrate your environment. Security platforms like Microsoft Defender Advanced Threat Protection (Microsoft Defender ATP) can help you prevent, detect, investigate, and respond to threats across all your endpoints. And Microsoft Defender ATP integrates with Microsoft Threat Protection to give you visibility across devices, identity, cloud apps, data, and infrastructure.

Humans and machine learning working together

Part of what makes this job so challenging is the sheer number of endpoints and environments that need to be monitored. Each of those entities produces thousands of alerts—not all of which are legitimate threats. If you are using several security tools that aren’t well integrated, correlating signals across your entire environment is tough. To find the real threats, you may spend hours combing through false positives. Alert fatigue is inevitable, making it easy to miss true issues.

In the modern SOC, artificial intelligence (AI) and machine learning (ML) will be deployed to help people focus on the right problems. If you’re worried that AI and ML will automate you out of a job, “help people” was the most important part of the previous sentence. We believe people are (and will continue to be) a necessary part of cyber defense work. AI and ML are simply not equipped to do the complex problem solving that people do. What AI and ML can do is reduce the noise, so that people can focus on responding to more complex threats and trying to uncover what the humans behind attacks are planning next.

In solutions like Azure Sentinel, AI and ML reason over massive amounts of data to better detect behavior that indicates compromise. Using probabilistic models, such as Markov Chain Monte Carlo simulations, Azure Sentinel takes low fidelity alerts and combines them into fewer actionable high-fidelity alerts, increasing the true positive rate to reduce analyst alert fatigue.

Gamification of security training

The core mission of the SOC is to identify compromise rapidly and respond to incidents. In the middle of an attack, minutes matter, so it’s critical that you respond quickly and intelligently. But these are also the moments when adrenaline runs high, and people panic. You may not make the best decisions in a state of high alert. To provide structure during an incident, it helps to have a plan.

A playbook includes a set of processes and steps for various triggers. Written playbooks provide you a reference in the heat of the moment. You can also automate playbooks using the security orchestration, automation, and response (SOAR) capabilities in solutions like Azure Sentinel.

Practicing your plan can help build muscle memory. In tabletop exercises, teams talk though how they would respond to specific scenarios in a low stress environment. When an actual attack occurs, they draw on these exercises to inform decision making.

To better engage participants, many SOCs are gamifying their training sessions. Capture the flag contests divide groups into a red team (the attackers) and a blue team (the defenders) and challenges them to defend (or capture) a computer system. Microsoft’s OneHunt brings together security professionals across the Microsoft organization to conduct a weeklong red team vs. blue team simulation. At the Ignite World Tour, Into the Breach was one of the most popular events. In this game, participants defended a system from an AI-generated attack using Azure Sentinel and Microsoft Threat Protection solutions. Activities like these let teams practice in a fast-moving situation that replicates the experience of a real attack, without the high stakes.

Learn more

It’s been a tough few months for technology teams supporting a rapid migration to remote work. As you begin to modernize your SOC for our new reality, the following resources may help:

For more information about Microsoft Security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. Or reach out to Diana on LinkedIn or Twitter.

The post Modernizing the security operations center to better secure a remote workforce appeared first on Microsoft Security.

Inside Microsoft Threat Protection: Mapping attack chains from cloud to endpoint

June 18th, 2020 No comments

The increasing pervasiveness of cloud services in today’s work environments, accelerated by a crisis that forced companies around the globe to shift to remote work, is significantly changing how defenders must monitor and protect organizations. Corporate data is spread across multiple applications—on-premises and in the cloud—and accessed by users from anywhere using any device. With traditional surfaces expanding and network perimeters disappearing, novel attack scenarios and techniques are introduced.

Every day, we see attackers mount an offensive against target organizations through the cloud and various other attack vectors with the goal of finding the path of least resistance, quickly expanding foothold, and gaining control of valuable information and assets. To help organizations fend off these advanced attacks, Microsoft Threat Protection (MTP) leverages the Microsoft 365 security portfolio to automatically analyze cross-domain threat data, building a complete picture of each attack in a single dashboard. With this breadth and depth of clarity, defenders can focus on critical threats and hunting for sophisticated breaches across endpoints, email, identities and applications.

Among the wide range of actors that Microsoft tracks—from digital crime groups to nation-state activity groups—HOLMIUM is one of the most proficient in using cloud-based attack vectors. Attributed to a Middle East-based group and active since at least 2015, HOLMIUM has been performing espionage and destructive attacks targeting aerospace, defense, chemical, mining, and petrochemical-mining industries. HOLMIUM’s activities and techniques overlap with what other researchers and vendors refer to as APT33, StoneDrill, and Elfin.

HOLMIUM has been observed using various vectors for initial access, including spear-phishing email, sometimes carrying archive attachments that exploit the CVE-2018-20250 vulnerability in WinRAR, and password-spraying. Many of their recent attacks, however, have involved the penetration testing tool Ruler used in tandem with compromised Exchange credentials.

The group used Ruler to configure a specially crafted Outlook Home Page URL to exploit the security bypass vulnerability CVE-2017-11774, which was fixed shortly after it was discovered. Successful exploitation automatically triggered remote code execution of a script when an Outlook client synced with a mailbox and rendered the profile Home Page URL. These scripts, usually VBScript followed by PowerShell, in turn initiated the delivery of various payloads.

In this blog, the first in the Inside Microsoft Threat Protection series, we will show how MTP provides unparalleled end-to-end visibility into the activities of nation-state level attacks like HOLMIUM. In succeeding blog posts in this series, we will shine a spotlight on aspects of the coordinated defense delivered by Microsoft Threat Protection.

Tracing an end-to-end cloud-based HOLMIUM attack

HOLMIUM has likely been running cloud-based attacks with Ruler since 2018, but a notable wave of such attacks was observed in the first half of 2019. These attacks combined the outcome of continuous password spray activities against multiple organizations, followed by successful compromise of Office 365 accounts and the use of Ruler in short sequences to gain control of endpoints. This wave of attacks was the subject of a warning from US Cybercom in July 2019.

These HOLMIUM attacks typically started with intensive password spray against exposed Active Directory Federation Services (ADFS) infrastructure; organizations that were not using multi-factor authentication (MFA) for Office 365 accounts had a higher risk of having accounts compromised through password spray. After successfully identifying a few user and password combinations via password spray, HOLMIUM used virtual private network (VPN) services with IP addresses associated with multiple countries to validate that the compromised accounts also had access to Office 365.

Figure 1. Password spray and compromised account sign-ins by HOLMIUM as detected in Azure Advanced Threat Protection (ATP) and Microsoft Cloud App Security (MCAS)

Armed with a few compromised Office 365 accounts and not blocked by MFA defense, the group launched the next step with Ruler and configured a malicious Home Page URL which, once rendered during a normal email session, resulted in the remote code execution of a PowerShell backdoor through the exploitation of a vulnerability like CVE-2017-11774. The two domains abused by HOLMIUM and observed during this 2019 campaign were “topaudiobook.net” and “customermgmt.net”.

Figure 2. Exploitation of Outlook Home Page feature using Ruler-like tools

Figure 3. Weaponized home page and initial PowerShell payload

This initial foothold allowed HOLMIUM to run their custom PowerShell backdoor (known as POWERTON) directly from an Outlook process and to perform the installation of additional payloads on the endpoint with different persistence mechanisms, such as WMI subscription (T1084) or registry autorun keys (T1060). Once the group has taken control of the endpoint (in addition to the cloud identity), the next phase was hours of exploration of the victim’s network, enumerating user accounts and machines for additional compromise, and lateral movement within the perimeter. HOLMIUM attacks typically took less than a week from initial access via the cloud to obtaining unhampered access and full domain compromise, which then allowed the attackers to stay persistent for long periods of time, sometimes for months on end.

Figure 4. Snippets of HOLMIUM PowerShell backdoor (POWERTON) implementing two different persistence mechanisms: WMI event subscription (T1084) and Registry run keys or Startup folder (T1060)

HOLMIUM attacks as seen and acted upon by Microsoft Threat Protection

HOLMIUM attacks demonstrate how hybrid attacks that span from cloud to endpoints require a wide range of sensors for comprehensive visibility. Enabling organizations to detect attacks like these by correlating events in multiple domains – cloud, identity, endpoints – is the reason why we build products like Microsoft Threat Protection. As we described in our analysis of HOLMIUM attacks, the group compromised identities in the cloud and leveraged cloud APIs to gain code execution or persist. The attackers then used a cloud email configuration to run specially crafted PowerShell on endpoints every time the Outlook process is opened.

During these attacks, many target organizations reacted too late in the attack chain—when the malicious activities started manifesting on endpoints via the PowerShell commands and subsequent lateral movement behavior. The earlier attack stages like cloud events and password spray activities were oftentimes missed or sometimes not linked with activities observed on the endpoint. This resulted in gaps in visibility and, subsequently, incomplete remediation.

While it’s relatively easy to remediate and stop malicious processes and downloaded malware on endpoints using endpoint security solutions, such a conventional approach would mean that the attack is persistent in the cloud, so the endpoint could be immediately compromised again. Remediating identities in the cloud is a different story.

Figure 5. The typical timeline of a HOLMIUM attack kill-chain

In an organization utilizing MTP, multiple expert systems that monitor various aspects of the network would detect and raise alerts on HOLMIUM’s activities. MTP sees the full attack chain across domains beyond simply blocking on endpoints or zapping emails, thus putting organizations in a superior position to fight the threat.

Figure 6. MTP components able to prevent or detect HOLMIUM techniques across the kill chain.

These systems work in unison to prevent attacks or detect, block, and remediate malicious activities. Across affected domains, MTP detects signs of HOLMIUM’s attacks:

  • Azure ATP identifies account enumeration and brute force attacks
  • MCAS detects anomalous Office 365 sign-ins that use potentially compromised credentials or from suspicious locations or networks
  • Microsoft Defender ATP exposes malicious PowerShell executions on endpoints triggered from Outlook Home Page exploitation

Figure 7. Activities detected across affected domains by different MTP expert systems

Traditionally, these detections would each be surfaced in its own portal, alerting on pieces of the attack but requiring the security team to stitch together the full picture. With Microsoft Threat Protection, the pieces of the puzzle are fused automatically through deep threat investigation. MTP generates a combined incident view that shows the end-to-end attack, with all related evidence and affected assets in one view.

Figure 8. The MTP incident brings together in one view the entire end-to-end attack across domain boundaries

Understanding the full attack chain enables MTP to automatically intervene to block the attack and remediate assets holistically across domains. In HOLMIUM attacks, MTP not only stops the PowerShell activity on endpoints but also contains the impact of stolen user accounts by marking them as compromised in Azure AD. This invokes Conditional Access as configured in Azure AD and applies conditions like MFA or limitations on the user account’s permissions to access organizational resources until the account is remediated fully.

Figure 9. Coordinated automatic containment and remediation across email, identity, and endpoints

Security teams can dig deep and expand their investigation into the incident in Microsoft 365 Security Center, where all details and related activities are available in one place. Furthermore, security teams can hunt for more malicious activities and artifacts through advanced hunting, which brings together all the raw data collected across product domains into one unified schema with powerful query constructs.

Figure 10. Hunting for activities across email, identity, endpoint and cloud applications

Finally, when the attack is blocked and all affected assets are remediated, MTP helps organizations identify improvements to their security configuration that would prevent the attacker from returning. The Threat Analytics report provides an exposure view and recommends prevention measures relevant to the threat. For example, the Analytics Report for HOLMIUM recommended, among other things, applying the appropriate security updates to prevent tools like Ruler from operating, as well as completely eliminating this attack vector in the organization.

Figure 11. Threat Analytics provides organizational exposure and recommended mitigations for HOLMIUM 

Microsoft Threat Protection: Stop attacks with automated cross-domain security

HOLMIUM exemplifies the sophistication of today’s cyberattacks, which leverage techniques spanning organizational cloud services and on-prem devices. Organizations must equip themselves with security tools that enable them to see the attack sprawl and respond to these attacks holistically and automatically. Protecting organizations from sophisticated attacks like HOLMIUM is the backbone of MTP.

Microsoft Threat Protection harnesses the power of Microsoft 365 security products and brings them together into an unparalleled coordinated defense that detects, correlates, blocks, remediates, and prevents such attacks across an organization’s Microsoft 365 environment. Existing Microsoft 365 licenses provide access to Microsoft Threat Protection features in Microsoft 365 security center without additional cost. Learn how Microsoft Threat Protection can help your organization to stop attacks with coordinated defense.

 

The post Inside Microsoft Threat Protection: Mapping attack chains from cloud to endpoint appeared first on Microsoft Security.

Lessons learned from the Microsoft SOC—Part 3c: A day in the life part 2

May 5th, 2020 No comments

This is the sixth blog in the Lessons learned from the Microsoft SOC series designed to share our approach and experience from the front lines of our security operations center (SOC) protecting Microsoft and our Detection and Response Team (DART) helping our customers with their incidents. For a visual depiction of our SOC philosophy, download our Minutes Matter poster.

COVID-19 and the SOC

Before we conclude the day in the life, we thought we would share an analyst’s eye view of the impact of COVID-19. Our analysts are mostly working from home now and our cloud based tooling approach enabled this transition to go pretty smoothly. The differences in attacks we have seen are mostly in the early stages of an attack with phishing lures designed to exploit emotions related to the current pandemic and increased focus on home firewalls and routers (using techniques like RDP brute-forcing attempts and DNS poisoning—more here). The attack techniques they attempt to employ after that are fairly consistent with what they were doing before.

A day in the life—remediation

When we last left our heroes in the previous entry, our analyst had built a timeline of the potential adversary attack operation. Of course, knowing what happened doesn’t actually stop the adversary or reduce organizational risk, so let’s remediate this attack!

  1. Decide and act—As the analyst develops a high enough level of confidence that they understand the story and scope of the attack, they quickly shift to planning and executing cleanup actions. While this appears as a separate step in this particular description, our analysts often execute on cleanup operations as they find them.

Big Bang or clean as you go?

Depending on the nature and scope of the attack, analysts may clean up attacker artifacts as they go (emails, hosts, identities) or they may build a list of compromised resources to clean up all at once (Big Bang)

  • Clean as you go—For most typical incidents that are detected early in the attack operation, analysts quickly clean up the artifacts as we find them. This rapidly puts the adversary at a disadvantage and prevents them from moving forward with the next stage of their attack.
  • Prepare for a Big Bang—This approach is appropriate for a scenario where an adversary has already “settled in” and established redundant access mechanisms to the environment (frequently seen in incidents investigated by our Detection and Response Team (DART) at customers). In this case, analysts should avoid tipping off the adversary until full discovery of all attacker presence is discovered as surprise can help with fully disrupting their operation. We have learned that partial remediation often tips off an adversary, which gives them a chance to react and rapidly make the incident worse (spread further, change access methods to evade detection, inflict damage/destruction for revenge, cover their tracks, etc.).Note that cleaning up phishing and malicious emails can often be done without tipping off the adversary, but cleaning up host malware and reclaiming control of accounts has a high chance of tipping off the adversary.

These are not easy decisions to make and we have found no substitute for experience in making these judgement calls. The collaborative work environment and culture we have built in our SOC helps immensely as our analysts can tap into each other’s experience to help making these tough calls.

The specific response steps are very dependent on the nature of the attack, but the most common procedures used by our analysts include:

  • Client endpoints—SOC analysts can isolate a computer and contact the user directly (or IT operations/helpdesk) to have them initiate a reinstallation procedure.
  • Server or applications—SOC analysts typically work with IT operations and/or application owners to arrange rapid remediation of these resources.
  • User accounts—We typically reclaim control of these by disabling the account and resetting password for compromised accounts (though these procedures are evolving as a large amount of our users are mostly passwordless using Windows Hello or another form of MFA). Our analysts also explicitly expire all authentication tokens for the user with Microsoft Cloud App Security.
    Analysts also review the multi-factor phone number and device enrollment to ensure it hasn’t been hijacked (often contacting the user), and reset this information as needed.
  • Service Accounts—Because of the high risk of service/business impact, SOC analysts work with the service account owner of record (falling back on IT operations as needed) to arrange rapid remediation of these resources.
  • Emails—The attack/phishing emails are deleted (and sometimes cleared to prevent recovering of deleted emails), but we always save a copy of original email in the case notes for later search and analysis (headers, content, scripts/attachments, etc.).
  • Other—Custom actions can also be executed based on the nature of the attack such as revoking application tokens, reconfiguring servers and services, and more.

Automation and integration for the win

It’s hard to overstate the value of integrated tools and process automation as these bring so many benefits—improving the analysts daily experience and improving the SOC’s ability to reduce organizational risk.

  • Analysts spend less time on each incident, reducing the attacker’s time to operation—measured by mean time to remediate (MTTR).
  • Analysts aren’t bogged down in manual administrative tasks so they can react quickly to new detections (reducing mean time to acknowledge—MTTA).
  • Analysts have more time to engage in proactive activities that both reduce organization risk and increase morale by keeping them focused on the mission.

Our SOC has a long history of developing our own automation and scripts to make analysts lives easier by a dedicated automation team in our SOC. Because custom automation requires ongoing maintenance and support, we are constantly looking for ways to shift automation and integration to capabilities provided by Microsoft engineering teams (which also benefits our customers). While still early in this journey, this approach typically improves the analyst experience and reduces maintenance effort and challenges.

This is a complex topic that could fill many blogs, but this takes two main forms:

  • Integrated toolsets save analysts manual effort during incidents by allowing them to easily navigate multiple tools and datasets. Our SOC relies heavily on the integration of Microsoft Threat Protection (MTP) tools for this experience, which also saves the automation team from writing and supporting custom integration for this.
  • Automation and orchestration capabilities reduce manual analyst work by automating repetitive tasks and orchestrating actions between different tools. Our SOC currently relies on an advanced custom SOAR platform and is actively working with our engineering teams (MTP’s AutoIR capability and Azure Sentinel SOAR) on how to shift our learnings and workload onto those capabilities.

After the attacker operation has been fully disrupted, the analyst marks the case as remediated, which is the timestamp signaling the end of MTTR measurement (which started when the analyst began the active investigation in step 2 of the previous blog).

While having a security incident is bad, having the same incident repeated multiple times is much worse.

  1. Post-incident cleanup—Because lessons aren’t actually “learned” unless they change future actions, our analysts always integrate any useful information learned from the investigation back into our systems. Analysts capture these learnings so that we avoid repeating manual work in the future and can rapidly see connections between past and future incidents by the same threat actors. This can take a number of forms, but common procedures include:
    • Indicators of Compromise (IoCs)—Our analysts record any applicable IoCs such as file hashes, malicious IP addresses, and email attributes into our threat intelligence systems so that our SOC (and all customers) can benefit from these learnings.
    • Unknown or unpatched vulnerabilities—Our analysts can initiate processes to ensure that missing security patches are applied, misconfigurations are corrected, and vendors (including Microsoft) are informed of “zero day” vulnerabilities so that they can create security patches for them.
    • Internal actions such as enabling logging on assets and adding or changing security controls. 

Continuous improvement

So the adversary has now been kicked out of the environment and their current operation poses no further risk. Is this the end? Will they retire and open a cupcake bakery or auto repair shop? Not likely after just one failure, but we can consistently disrupt their successes by increasing the cost of attack and reducing the return, which will deter more and more attacks over time. For now, we must assume that adversaries will try to learn from what happened on this attack and try again with fresh ideas and tools.

Because of this, our analysts also focus on learning from each incident to improve their skills, processes, and tooling. This continuous improvement occurs through many informal and formal processes ranging from formal case reviews to casual conversations where they tell the stories of incidents and interesting observations.

As caseload allows, the investigation team also hunts proactively for adversaries when they are not on shift, which helps them stay sharp and grow their skills.

This closes our virtual shift visit for the investigation team. Join us next time as we shift to our Threat hunting team (a.k.a. Tier 3) and get some hard won advice and lessons learned.

…until then, share and enjoy!

P.S. If you are looking for more information on the SOC and other cybersecurity topics, check out previous entries in the series (Part 1 | Part 2a | Part 2b | Part 3a | Part 3b), Mark’s List (https://aka.ms/markslist), and our new security documentation site—https://aka.ms/securtydocs. Be sure to bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. Or reach out to Mark on LinkedIn or Twitter.

The post Lessons learned from the Microsoft SOC—Part 3c: A day in the life part 2 appeared first on Microsoft Security.

Microsoft Threat Protection leads in real-world detection in MITRE ATT&CK evaluation

May 1st, 2020 No comments

The latest round of MITRE ATT&CK evaluations proved yet again that Microsoft customers can trust they are fully protected even in the face of such an advanced attack as APT29. When looking at protection results out of the box, without configuration changes, Microsoft Threat Protection (MTP):

  • Provided nearly 100 percent coverage across the attack chain stages.
  • Delivered leading out-of-box visibility into attacker activities, dramatically reducing manual work for SOCs vs. vendor solutions that relied on specific configuration changes.
  • Had the fewest gaps in visibility, diminishing attacker ability to operate undetected.

Beyond just detection and visibility, automation, prioritization, and prevention are key to stopping this level of advanced attack. During testing, Microsoft:

  • Delivered automated real-time alerts without the need for configuration changes or custom detections; Microsoft is one of only three vendors who did not make configuration changes or rely on delayed detections.
  • Flagged more than 80 distinct alerts, and used built-in automation to correlate these alerts into only two incidents that mirrored the two MITRE ATT&CK simulations, improving SOC analyst efficiency and reducing attacker dwell time and ability to persist.
  • Identified seven distinct steps during the attack in which our protection features, which were disabled during testing, would have automatically intervened to stop the attack.

Microsoft Threat Experts provided further in-depth context and recommendations for further investigation through our comprehensive in-portal forensics. The evaluation also proved how Microsoft Threat Protection goes beyond just simple visibility into attacks, but also records all stages of the attack in which MTP would have stepped in to block the attack and automatically remediate any affected assets.

While the test focused on endpoint detection and response, MITRE’s simulated APT29 attack spans multiple attack domains, creating opportunities to empower defenders beyond just endpoint protection. Microsoft expanded defenders’ visibility beyond the endpoint with Microsoft Threat Protection (MTP). MTP has been recognized by both Gartner and Forrester as having extended detection and response capabilities. MTP takes protection to the next level by combining endpoint protection from Microsoft Defender ATP (EDR) with protection for email and productivity tools (Office 365 ATP), identity (Azure ATP), and cloud applications (Microsoft Cloud App Security [MCAS]). Below, we will share a deep-dive analysis and explanation of how MTP successfully demonstrated novel optic and detection advantages throughout the MITRE evaluation that only our solution can provide.

Incident-based approach enables real-time threat prioritization and remediation

Analyzing the MITRE evaluation results from the lens of breadth and coverage, as the diagrams below show, MTP provided exceptional coverage for all but one of the 19 tested attack stages. This means that in real life, the SOC would have received alerts and given full visibility into each of the stages of the two simulated attack scenarios across initial access, deployment of tools, discovery, persistence, credential access, lateral movement, and exfiltration. In Microsoft Threat Protection, alerts carry with them rich context—including a detailed process tree showing the recorded activities (telemetry) that led to the detection, the assets involved, all supporting evidence, as well as a description of what the alert means and recommendations for SOC action. Note that true alerts are attributed in the MITRE evaluation with the “Alert” modifier, and not all items marked as “Tactic” or “Technique” are actual alerts.

MTP detection coverage across the attack kill-chain stages, with block opportunities.

Figure 1: MTP detection coverage across the attack kill-chain stages, with block opportunities.

Figure 1: MTP detection coverage across the attack kill-chain stages, with block opportunities.

Note: Step 10, persistence execution, is registered as a miss due to a software bug, discovered during the test, that restricted visibility on Step 10—“Persistence Execution.” These evaluations are a valuable opportunity to continually improve our product, and this bug was fixed shortly after testing completed.

The MITRE APT29 evaluation focused solely on detection of an advanced attack; it did not measure whether or not participants were able to also prevent an attack. However, we believe that real-world protection is more than just knowing that an attack occurred—prevention of the attack is a critical element. While protections were intentionally turned off to allow the complete simulation to run, using the audit-only prevention configuration, MTP also captured and documented where the attack would have been completely prevented, including—as shown in the diagram above – the very start of the breach, if protections had been left on.

Microsoft Threat Protection also demonstrated how it promotes SOC efficiency and reduces attacker dwell time and sprawl. SOC alert fatigue is a serious problem; raising a large volume of alerts to investigate does not help SOC analysts understand where to devote their limited time and resources. Detection and response products must prioritize the most important attacker actions with the right context in near real time.

In contrast to alert-only approaches, MTP’s incident-based approach automatically identifies complex links between attacker activities in different domains including endpoint, identity, and cloud applications at an altitude that only Microsoft can provide because we have optics into each of these areas. In this scenario, MTP connected seemingly unrelated alerts using supporting telemetry across domains into just two end-to-end incidents, dramatically simplifying prioritization, triage, and investigation. In real life, this also simplifies automated response and enables SOC teams to scale capacity and capabilities. MITRE addresses a similar problem with the “correlated” modifier on telemetry and alerts but does not reference incidents (just yet).

Figure 2: MTP portal showing 2nd day attack incident including correlated alerts and affected assets.

Figure 2: MTP portal showing 2nd day attack incident including correlated alerts and affected assets.

Figure 3: 2nd day incident with all correlated alerts for SOC efficiency, and the attack incident graph.

Figure 3: 2nd day incident with all correlated alerts for SOC efficiency, and the attack incident graph.

Microsoft is the leader in out-of-the-box performance

Simply looking at the number of simulation steps covered—or, alternatively, at the number of steps with no coverage, where less is more—the MITRE evaluation showed MTP provided the best protection with zero delays or configuration changes.

Microsoft believes protection must be durable without requiring a lot of SOC configuration changes (especially during an ongoing attack), and it should not create friction by delivering false positives.

The chart below shows Microsoft as the vendor with the least number of steps categorized as “None” (also referred to as “misses”) out of the box. The chart also shows the number of detections marked with “Configuration Change” modifier, which was done quite considerably, as well as delayed detections (“Delayed” modifier), which indicate in-flight modifications and latency in detections.

Microsoft is one of only three vendors that made no modifications or had any delays during the test.

Microsoft is one of only three vendors that made no modifications or had any delays during the test.

Similarly, when looking at visibility and coverage for the 57 MITRE ATT&CK techniques replicated during this APT29 simulation, Microsoft’s coverage shows top performance at 95 percent of the techniques covered, as shown in the chart below.

A product’s coverage of techniques is an important consideration for customers when evaluating security solutions, often with specific attacker(s) in mind, which in turn determines the attacker techniques they are most concerned with and, consequently, the coverage they most care about.
Figure 5: Coverage across all attack techniques in the evaluation.

Figure 5: Coverage across all attack techniques in the evaluation.

MTP provided unique detection and visibility across identity, cloud, and endpoints

The powerful capabilities of Microsoft Threat Protection originate from unique signals not just from endpoints but also from identity and cloud apps. This combination of capabilities provides coverage where other solutions may lack visibility. Below are three examples of sophisticated attacks simulated during the evaluation that span across domains (i.e., identity, cloud, endpoint) and showcase the unique visibility and unmatched detections provided by MTP:

  • Detecting the most dangerous lateral movement attack: Golden Ticket—Unlike other vendors, MTP’s unique approach for detecting Golden Ticket attacks does not solely rely on endpoint-based command-line sequences, PowerShell strings like “Invoke-Mimikatz”, or DLL-loading heuristics that can all be evaded by advanced attackers. MTP leverages direct optics into the Domain Controller via Azure ATP, the identity component of MTP. Azure ATP detects Golden Ticket attacks using a combination of machine learning and protocol heuristics by looking at anomalies such as encryption downgrade, forged authorization data, nonexistent account, ticket anomaly, and time anomaly. MTP is the only product that provided the SOC context of the encryption downgrade, together with the source and target machines, resources accessed, and the identities involved.
  • Exfiltration over alternative protocol: Catching and stopping attackers as they move from endpoint to cloud—MTP leverages exclusive signal from Microsoft Cloud App Security (MCAS), the cloud access security broker (CASB) component of MTP, which provides visibility and alerts for a large variety of cloud services, including OneDrive. Using the MCAS Conditional Access App Control mechanism, MTP was able to monitor cloud traffic for data exfiltration and raise an automatic alert when a ZIP archive with stolen files was exfiltrated to a remote OneDrive account controlled by the attacker. It is important to note the OneDrive account used by MITRE Redteam was unknown to the Microsoft team prior to being automatically detected during the evaluation.
  • Uncovering Remote System Discovery attacks that abuse LDAP—Preceding lateral movement, attackers commonly abuse the Lightweight Directory Access Protocol (LDAP) protocol to query user groups and user information. Microsoft introduced a powerful new sensor for unique visibility of LDAP queries, aiding security analyst investigation and allowing detection of suspicious patterns of LDAP activity. Through this sensor, Microsoft Defender ATP, the endpoint component of MTP, avoids reliance on PowerShell strings and snippets. Rather, Microsoft Defender ATP uses the structure and fields of each LDAP query originating from the endpoint to the Domain Controller (DC) to spot broad requests or suspicious queries for accounts and groups. Where possible, MTP also combines and correlates LDAP attacks detected on the endpoint by Microsoft Defender ATP with LDAP events seen on the DC by Azure ATP.

Figure 6: Golden Ticket alert based on optics on Domain Controller activity.

Figure 6: Golden Ticket alert based on optics on Domain Controller activity.

Figure 7: Suspicious LDAP activity detected using deep native OS sensor.

Figure 7: Suspicious LDAP activity detected using deep native OS sensor.

Microsoft Threat Experts: Threat context and hunting skills when and where needed

In this edition of MITRE ATT&CK evaluation, for the first time, Microsoft products were configured to take advantage of the managed threat hunting service Microsoft Threat Experts. Microsoft Threat Experts provides proactive hunting for the most important threats in the network, including human adversary intrusions, hands-on-keyboard attacks, or advanced attacks like cyberespionage. During the evaluation, the service operated with the same strategy normally used in real customer incidents: the goal is to send targeted attack notifications that provide real value to analysts with contextual analysis of the activities. Microsoft Threat Experts enriches security signals and raises the risk level appropriately so that the SOC can focus on what’s important, and breaches don’t go unnoticed.

Microsoft Threat Experts notifications stand out among other participating vendors as these notifications are fully integrated into the experience, incorporated into relevant incidents and connected to relevant events, alerts, and other evidence. Microsoft Threat Experts is enabling SOC teams to effortlessly and seamlessly receive and merge additional data and recommendations in the context of the incident investigation.

Figure 8: Microsoft Threat Experts alert integrates into the portal and provides hyperlinked rich context.

Figure 8: Microsoft Threat Experts alert integrates into the portal and provides hyperlinked rich context.

Transparency in testing is key to threat detection, prevention

Microsoft Threat Protection delivers real-world detection, response, and, ultimately, protection from advanced attacks, as demonstrated in the latest MITRE evaluation. Core to MITRE’s testing approach is emulating real-world attacks to understand whether solutions are able to adequately detect and respond to them. We saw that Microsoft Threat Protection provided clear detection across all categories and delivered additional context that shows the full scope of impact across an entire environment. MTP empowers customers not only to detect attacks, offering human experts as needed, and easily return to a secured state with automated remediation. As is true in the real world, our human Threat Experts were available on demand to provide even more context and help with.

We thank MITRE for the opportunity to contribute to the test with unique threat intelligence that only three participants stepped forward to share. Our unique intelligence and breadth of signal and visibility across the entire environment is what enables us to continuously score top marks. We look forward to participating in the next evaluation, and we welcome your feedback and partnership throughout our journey.

Thanks,

Moti and the entire Microsoft Threat Protection team

Related Links:

 

The post Microsoft Threat Protection leads in real-world detection in MITRE ATT&CK evaluation appeared first on Microsoft Security.

Forrester names Microsoft a Leader in 2020 Enterprise Detection and Response Wave

March 18th, 2020 No comments

I’m proud to announce that Microsoft is positioned as a Leader in The Forrester Wave™: Enterprise Detection and Response, Q1 2020. Among the Leaders in the report, Microsoft received the highest score in the current offering category. Microsoft also received the highest score of all participating vendors in the extended capabilities criteria. We believe Microsoft’s position as a Leader in this Forrester Enterprise Detection and Response Wave is not only a recognition of the value we deliver with our endpoint detection and response capabilities through Microsoft Defender Advanced Threat Protection (ATP), but recognition for our customers for their help in defining a market-leading product they really need and love using.

Microsoft Defender ATP, our endpoint protection solution, received the highest score possible (5 out of 5) in the endpoint telemetry, security analytics, threat hunting, ATT&CK mapping, and response capabilities criteria, as well in the Performance and Planned Enhancements criteria. The endpoint detection and response capabilities built into Microsoft Defender ATP empower defenders to achieve more and focus on remediating the threats that will have the biggest impact to their organization. Our broad and deep optics into the threat landscape and our built-in approach to security make our offerings unique.

The recently announced Microsoft Threat Protection, a solution that expands Microsoft Defender ATP from endpoint detection and response (EDR) to an extended detection and response (XDR) solution by combining our endpoint protection with protection for email and productivity tools (Office ATP), identity (Azure ATP), and cloud applications (Microsoft Cloud App Security), received the highest score of all participating vendors for its extended capabilities. As customers face cross-domain attacks, such as email phishing that leads to endpoint and identity compromise, Microsoft Threat Protection looks across these domains to understand the entire chain of events, identifies affected assets, like users, endpoints, mailboxes, and applications, and auto-heals them back to a safe state.

Microsoft is dedicated to protecting companies from real cyberattacks. We are focused on product excellence, innovation, and cutting-edge technology. The success of our customers is our highest priority, which is why we put such a strong emphasis on product excellence to translate the more than $1 billion a year investment, collaboration with over 100 Microsoft Intelligent Security Association (MISA) partners, and more than 3,500 security professionals into real, cloud-delivered protection for our customers. These partnerships, investments, and continuous innovation have led us to secure this leading spot as a provider that “matters most.”

For us, this latest recognition is a testament to our research and product teams’ ongoing commitment to provide our customers with an effective and comprehensive security solution and adds to a growing list of industry recognition of Microsoft Defender ATP.

This is our first time participating in this Forrester Enterprise Detection and Response Wave and we are truly excited to have been recognized as a Leader. It’s another proud milestone in our endpoint security journey with Microsoft Defender ATP and Microsoft Threat Protection to building an industry-leading endpoint and XDR solution that customers love.

Download this complimentary full report and read the analysis behind Microsoft’s positioning as a Leader.

For more information on our endpoint security platform, or to sign up for a trial, visit our Microsoft Defender ATP page.

 

The Forrester Wave™: Enterprise Endpoint Detection and Response, Q1 2020, Josh Zelonis, March 18, 2020.
This graphic was published by Forrester Research as part of a larger research document and should be evaluated in the context of the entire document. The Forrester document is available upon request from https://reprints.forrester.com/#/assets/2/108/RES146957/reports.

The post Forrester names Microsoft a Leader in 2020 Enterprise Detection and Response Wave appeared first on Microsoft Security.

Microsoft Security—a Leader in 5 Gartner Magic Quadrants

December 3rd, 2019 No comments

Gartner has named Microsoft Security a Leader in five Magic Quadrants. This is exciting news that we believe speaks to the breadth and depth of our security offerings. Gartner places vendors as Leaders who demonstrate balanced progress and effort in all execution and vision categories. This means that Leaders not only have the people and capabilities to deliver strong solutions today, they also understand the market and have a strategy for meeting customer needs in the future. Microsoft was identified as a Leader in the following five security areas:

  • Cloud Access Security Broker (CASB) solutions1
  • Access Management2
  • Enterprise Information Archiving3
  • Unified Endpoint Management (UEM) tools4
  • Endpoint Protection Platforms5

Given this, Microsoft Security doesn’t just deliver strong security products in five crucial security areas only. We provide a comprehensive set of security solutions that are built to work together, from identity and access management to threat protection to information protection and cloud security.

Our products integrate easily and share intelligence from the trillions of signals generated daily on the Microsoft Intelligent Security Graph. And they work with non-Microsoft solutions too. You can monitor and safeguard your assets across clouds—whether you use Microsoft Azure, Amazon Web Services, Slack, Salesforce, or all the above.

By unifying security tools, you get visibility into your entire environment across on-premises and the cloud, to better protect all your users, data, devices, and applications. Today, we’ll review the five areas where Microsoft is recognized as a Leader in security.

A Leader in CASB

Our cloud security solutions provide cross-cloud protection, whether you use Amazon Web Services, Azure, Google Cloud Platform—or all three. We also help you safeguard your data in third-party apps like Salesforce and Slack.

Gartner named Microsoft a Leader in CASB based on the ability to execute and completeness of vision. Cloud App Security provides rich visibility into your shadow IT, enables you to identify and remediate cloud native attacks, and allows you to control how your data travels across all your cloud apps—whether they’re from Microsoft or third-party applications.

As Gartner says in the CASB Magic Quadrant, “platforms from leading CASB vendors were born in the cloud and designed for the cloud. They have a deeper understanding of users, devices, applications, transactions, and sensitive data than CASB functions designed to be extensions of traditional network security and SWG security technologies.”

We work closely with customer to improve our products, which is one of the reasons our customer base for Cloud App Security continues to grow.

Gartner graph showing Microsoft as a Leader in Cloud App Security.

A Leader in Access Management

Azure Active Directory (Azure AD) is a universal identity and access management platform that provides the right people the right access to the right resources. It safeguards identities and simplifies access for users. Users sign in once with a single identity to access all the apps they need—whether they’re on-premises apps, Microsoft apps, or third-party cloud apps. Microsoft was recognized for high scores in market understanding and customer experience.

Gartner says, “Vendors that have developed Access Management as a service have risen in popularity. Gartner estimates that 90 percent or more of clients based in North America and approximately 65 percent in Europe and the Asia/Pacific region countries are also seeking SaaS-delivered models for new Access Management purchases. This demonstrates a preference for agility, quicker time to new features, elimination of continual software upgrades, reduction of supported infrastructure and other SaaS versus software benefits demonstrated in the market.”

Gartner graph showing Microsoft as a Leader in Access Management.

A Leader in Enterprise Information Archiving

Enterprise information archiving solutions help organizations archive emails, instant messages, SMS, and social media content. Gartner recognized us as a Leader in this Magic Quadrant based on ability to execute and completeness of vision.

Gartner estimates, “By 2023, 45 percent of enterprise customers will adopt an enterprise information archiving (EIA) solution to meet new requirements driven by data privacy regulations; this is a major increase from five percent in 2019.”

Gartner graph showing Microsoft as a Leader in Enterprise Information Archiving.

A Leader in Unified Endpoint Management (UEM)

Unified Endpoint Management (UEM) solutions provide a comprehensive solution to manage mobile devices and traditional endpoints, like PCs and Macs. Microsoft’s solution, Microsoft Intune, lets you securely support company-provided devices and bring your own device policies. You can even protect company apps and data on unmanaged devices. We have seen rapid growth in Intune deployments and expect that growth to continue.

Gartner noted that, “Leaders are identified as those vendors with strong execution and vision scores with products that exemplify the suite of functions that assist organizations in managing a diverse field of mobile and traditional endpoints. Leaders provide tools that catalyze the migration of PCs from legacy CMT management tools to modern, UEM-based management.”

Intune is built to work with other Microsoft 365 security solutions, such as Cloud App Security and Azure AD to unify your security approach across all your clouds and devices. As Gartner writes, “Achieving a truly simplified, single-console approach to endpoint management promises many operational benefits.”

Gartner graph showing Microsoft as a Leader in Unified Endpoint Management.

A Leader in Endpoint Protection Platforms

Our threat protection solutions provide tools to identify, investigate, and respond to threats across all your endpoints. Gartner named Microsoft a Leader for Endpoint Protection Platforms, recognizing our products and our strengths and ability to execute and completeness of vision. Azure Advanced Threat Protection (ATP) detects and investigates advanced attacks on-premises and in the cloud. Windows Defender Antivirus protects PCs against software threats like viruses, malware, and spyware across email, apps, the cloud, and the web.

Gartner says, “A Leader in this category will have broad capabilities in advanced malware protection, and proven management capabilities for large-enterprise accounts.”

Gartner graph showing Microsoft as a Leader in Endpoint Protection Platforms.

Learn more

Microsoft is committed to helping our customers digitally transform while providing the security solutions that enable them to focus on what they do best. Learn more about our comprehensive security solutions across identity and access management, cloud security, information protection, threat protection, and universal endpoint management by visiting our website.

1Gartner “Magic Quadrant for Cloud Access Security Brokers,” by Steve Riley, Craig Lawson, October 2019

2Gartner “Magic Quadrant for Access Management,” by Michael Kelley, Abhyuday Data, Henrique, Teixeira, August 2019

3Gartner “Magic Quadrant for Enterprise Information Archiving,” by Julian Tirsu, Michael Hoech, November 2019

4Gartner “Magic Quadrant for Unified Endpoint Management Tools,” by Chris Silva, Manjunath Bhat, Rich Doheny, Rob Smith, August 2019

5Gartner “Magic Quadrant for Endpoint Protection Platforms,” by Peter Firstbrook, Dionisio Zumerle, Prateek Bhajanka, Lawrence Pingree, Paul Webber, August 2019

These graphics were published by Gartner, Inc. as part of larger research documents and should be evaluated in the context of the entire document. The Gartner documents are available upon request from Microsoft. Gartner does not endorse any vendor, product, or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, express or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose. GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally, and is used herein with permission. All rights reserved.

The post Microsoft Security—a Leader in 5 Gartner Magic Quadrants appeared first on Microsoft Security.

Changing security incident response by utilizing the power of the cloud—DART tools, techniques, and procedures: part 1

November 14th, 2019 No comments

This is the first in a blog series discussing the tools, techniques, and procedures that the Microsoft Detection and Response Team (DART) use to investigate cybersecurity incidents at our customer organizations. Today, we introduce the team and give a brief overview of each of the tools that utilize the power of the cloud. In upcoming posts, we’ll cover each tool in-depth and elaborate on techniques and procedures used by the team.

Key lessons learned from DART’s investigation evolution

DART’s investigation procedures and technology have evolved over 14 years of assisting our customers during some of the worst hack attacks on record. Tools have evolved from primarily bespoke (custom) tools into a blend of commercially available Microsoft detection solutions plus bespoke tools, most of which extend the core Microsoft detection capabilities. The team contributes knowledge and technology back to the product groups, who leverage that experience into our products, so our customers can benefit from our (hard-won) lessons learned during our investigations.

This experience means that DART’s tooling and communication requirements during incident investigations tend to be a bit more demanding than most in-house teams, given we’re often working with complex global environments. It’s not uncommon that an organization’s ability to detect and respond to security incidents is inadequate to cope with skilled attackers who will spend days and weeks profiling the organization and its employees. Consequently, we help organizations across many different industry verticals and from those experiences we have collated some key lessons:

  • Detection is critical (and weak)—One of the first priorities when the team engages to assist with an incident investigation at a customer site is to increase the detection capability of that organization. Over the years, we’ve seen that industry-wide detection has stayed the weakest of the Protect, Detect, Respond triad. While the average dwell time numbers are trending downward, it’s still measured in days (usually double digit numbers) and days of access to your systems is plenty of time to do massive damage.
  • Inadequate auditing—More often than not, DART finds that organizations don’t turn on auditing or have misconfigured auditing with the result that there is not a full record of attacker activities. See auditing best practices for Active Directory and Office 365. In addition, given the current prolific use of weaponized PowerShell scripts by attackers, we strongly recommend implementing PowerShell auditing.
  • Static plus active containment—Static containment (protection) controls can never be 100 percent successful against skilled human attackers, so we need to add in an active containment component that can detect and contain those attackers at the edge and as they move around the environment. This second part is crucial—as they move around the environment—we need to move away from the traditional mindset of “Time to Detect” and implement a “Time to Remediate” approach with active containment procedures to disrupt attackers’ abilities to realize their objective once in the environment. Of course, attackers that have been in the organization for a very long time require more involved investigation and planning for an eviction event to be successful and lessen any potential impact to the organization.

These lessons have significantly influenced the methodology and toolsets we use in DART as we engage with our customers. In this blog series, we’ll share lessons learned and best practices of organizations and incident responders to help ensure readiness.

Observe-Orient-Decide-Act (OODA) framework

Before we can act in any meaningful way, we need to observe attacker activities, so we can orient ourselves and decide what to do. Orientation is the most critical step in the Observe-Orient-Decide-Act (OODA) framework developed by John Boyd and overviewed in this OODA article. Wherever possible, the team will light up several tools in the organization, installing the Microsoft Management Agent (MMA) and trial versions of the Microsoft Threat Protection suite, which includes Microsoft Defender ATP, Azure ATP, Office 365 ATP, and Microsoft Cloud App Security (our Cloud Access Security Broker (CASB) solution named illustrated in Figure 1). Why? Because these technologies were developed specifically to form an end-to-end picture across the attacker cyber kill-chain framework (reference Lockheed Martin) and together work swiftly to gather indicators of anomaly, attack, and compromise necessary for successful blocking of the attacker.

The Microsoft ATP platform of tools are used extensively by the Microsoft Corporate IT security operations center (SOC) in our Cyber Defence Operations Center (CDOC), whose slogan is “Minutes Matter.” Using these technologies, the CDOC has dropped their time to remediate incidents from hours to minutes—a game changer we’ve replicated at many of our customers.

Microsoft Threat Protection

The Microsoft Threat Protection platform includes Microsoft Defender ATP, Azure ATP, Office 365 ATP, as well as additional services that strengthen security for specific attack vectors, while adding security for attack vectors that would not be covered by the ATP solutions alone. Read Announcing Microsoft Threat Protection for more information. In this blog, we focus on the tools that give DART a high return on investment in terms of speed to implement versus visibility gained.

Infographic showing maximum detection during attack stages, with Office 365 ATP, Azure AD Identity Protection, and Cloud App Security.

Figure 1. Microsoft Threat Protection and the cyber kill-chain.

Although the blog series discusses Microsoft technologies preferentially, the intent here is not to replicate data or signals—the team uses what the customer has—but to close gaps where the organization might be missing signal. With that in mind, let’s move on to a brief discussion of the tools.

Horizontal tools: Visibility across the cyber kill-chain

Horizonal tools include Azure Sentinel and Azure Security Center:

  • Azure Sentinel—New to DART’s arsenal is Azure Sentinel—the first cloud-native SIEM (security investigation and event management). Over the past few months, DART has deployed Azure Sentinel as a mechanism to combine the different signal sets in what we refer to as a SIEM and SOAR as a service. SOAR, which stands for security orchestration and automation, is indispensable in its capability to respond to attacker actions with speed and accuracy. Our intention is not to replicate a customer SIEM but to use the power of the cloud and machine learning to quickly combine alerts across the cyber kill-chain in a fusion model to lessen the time it takes an investigator to understand what the attacker is doing.

Importantly, machine learning gives DART the ability to aggregate diverse signals and get an end-to-end picture of what is going on quickly and to act on that information. In this way, information important to the investigation can be forwarded to the existing SIEM, allowing for efficient and speedy analysis utilizing the power of the cloud.

  • Azure Security Center—DART also onboards the organization into Azure Security Center, if not already enabled for the organization. This tool significantly adds to our ability to investigate and pivot across the infrastructure, especially given the fact that many organizations don’t yet have Windows 10 devices deployed throughout. Security Center also does much more with machine learning for next-generation detection and simplifying security management across clouds and platforms (Windows/Linux).

DART’s focus for the tool is primarily on the log analytics capabilities that allow us to pivot our investigation and, furthermore, utilize the recommended hardening suggestions during our rapid recovery work. We also recommend the implementation of Security Center proactively, as it gives clear security recommendations that an organization can implement to secure their on-premises and cloud infrastructures. See Azure Security Center FAQs for more information.

Vertical tools: Depth visibility in designated areas of the cyber kill-chain

Vertical tools include Azure ATP, Office 365 ATP, Microsoft Defender ATP, Cloud App Security, and custom tooling:

  • Azure ATP—The Verizon Data Breach Report of 2018 reported that 81 percent of breaches are caused by compromised credentials. Every incident that DART has responded to over the last few years has had some component of credential theft; consequently Azure ATP is one of the first tools we implement when we get to a site—before, if possible—to get insight into what users and entities are doing in the environment. This allows us to utilize built-in detections to determine suspicious behaviour, such as suspicious changes of identity metadata and user privileges.
  • Office 365 ATP—With approximately 90 percent of all attacks starting with a phishing email, having ways to detect when a phishing email makes it past email perimeter defences is critical. DART investigators are always interested in which mechanism the attacker compromised the environment—simply so we can be sure to block that vector. We use Office 365 ATP capabilities— such as security playbooks and investigation graphs—to investigate and remediate attacks faster.
  • Microsoft Defender ATP—If the organization has Windows 10 devices, we can implement Microsoft Defender ATP (previously Windows Defender ATP)—a cloud-based solution that leverages a built-in agent in Windows 10. Otherwise, we’ll utilize MMA to gather information from older versions of Windows and Linux machines and pull that information into our investigation. This makes it possible to detect attacker activities, aggregate this information, and prioritize the investigation of detected activity.
  • Cloud App SecurityCloud App Security is a multi-mode cloud access security broker that natively integrates with the other tools DART deploys, giving access to sophisticated analytics to identify and combat cyberthreats across the organizations. This allows us to detect any malicious activity using cloud resources that the attacker might be undertaking. Cloud App Security, combined with Azure ATP, allows us to see if the attacker is exfiltrating data from the organization, and also allows organizations to proactively determine and assess any shadow IT they may be unaware of.
  • Custom tooling—Bespoke custom tooling is deployed depending on attacker activities and the software present in the organization. Examples include infrastructure health-check tools, which allow us to check for any modification of Microsoft technologies—such as Active Directory, Microsoft’s public key infrastructure (PKI), and Exchange health (where Office 365 is not in use) as well as tools designed to detect use of specific specialist attack vectors and persistence mechanisms. Where machines are in frame for a deeper investigation, we normally utilize a tool that runs against a live machine to acquire more information about that machine, or even run a full disk acquisition forensic tool, depending on legal requirements.

Together, the vertical tools give us unparalleled view into what is happening in the organization. These signals can be collated and aggregated into both Security Center and Azure Sentinel, where we can pull other data sources as available to the organization’s SOC.

Figure 2 represents how we correlate the signal and utilize machine learning to quickly identify compromised entities inside the organization.

Infographic showing combined signals: Identity, Cloud Apps, Data, and Devices.

Figure 2. Combining signals to identify compromised users and devices.

This gives us a very swift way to bubble up anomalous activity and allows us to rapidly orient ourselves against attacker activity. In many cases, we can then use automated playbooks to block attacker activity once we understand the attacker’s tools, techniques, and procedures; but that will be the subject of another post.

Next up—how Azure Sentinel helps DART

Today, in Part 1 of our blog series, we introduced the suite of tools used by DART and the Microsoft CDOC to rapidly detect attacker activity and actions—because in the case of cyber incident investigations, minutes matter. In our next blog we’ll drill down into Azure Sentinel capabilities to highlight how it helps DART; stay posted!

Azure Sentinel

Intelligent security analytics for your entire enterprise.


Learn more

Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Changing security incident response by utilizing the power of the cloud—DART tools, techniques, and procedures: part 1 appeared first on Microsoft Security.

Microsoft Cloud Security solutions provide comprehensive cross-cloud protection

November 6th, 2019 No comments

The infrastructure, data, and apps built and run in the cloud are the foundational building blocks for a modern business. No matter where you are in your cloud journey, you likely utilize every layer of the cloud—from infrastructure as a service (IaaS) to platform as a service (PaaS) to software as a service (SaaS). You also may take advantage of services from several cloud and app providers. Many organizations operate a cross-cloud environment, but it can complicate security. A fragmented view of your cloud environment limits opportunities to holistically improve your security posture. It can also lead to missed threats and SecOps burnout.

To address these challenges, we provide a set of comprehensive Cloud Security solutions to protect every layer of the cloud—from Amazon Web Services (AWS) to Microsoft Azure (Azure) to Google Cloud Platform (GCP)—from Slack to Salesforce to your line of business apps.

Microsoft is in a unique position as a cloud provider and security vendor. We leverage global cloud-scale, trillions of signals and deep expertise to build industry-leading security solutions to protect cloud resources.

Our Cloud Security solutions can help you:

  • Realize integrated visibility and protection across clouds with Cloud Security Posture Management and Cloud Workload Protection Platform solutions.
  • Develop and secure your custom apps in the cloud with our Application Security services.
  • Monitor and control user activities and data across all your apps with our leading Cloud Access Security Broker (CASB).

Realize integrated visibility and protection across clouds

No matter which cloud services and apps you use, you need an all-inclusive view across all of them to protect your intellectual property and assets. You also need tools to help you block and mitigate threats. Cloud Security Posture Management and Cloud Workload Protection Platform are solutions that give you the visibility and capabilities to understand your cross-cloud environment and better secure it.

Cloud Security Posture Management

Azure Security Center continuously monitors your cross-cloud resources such as virtual machines, networks, applications, and data services. You can quickly assess your security posture with Secure Score, a feature of Security Center. Secure Score provides a numerical value for your current state and recommends actions. This scoring system offers best-practice guidance that can help prevent common misconfigurations—such as exposure of sensitive resources to the internet, lack of encryption, uninstalled updates, or a missing firewall for your cloud workloads.

Key benefits include:

  • A bird’s-eye security posture view.
  • Ability to continuously monitor and protect all your cross-cloud resources.
  • Best practice recommendations.
  • Visibility into the compliance state of your Azure environment.

Cloud Workload Protection Platform

Security Center doesn’t just evaluate your security posture, it also provides tools to help you reduce your attack surface. Using machine learning to process trillions of signals across from around the globe, Security Center alerts you of threats to your environments, such as remote desktop protocol (RDP), brute-force attacks, and SQL injections.

Protect Windows and Linux servers, cloud-native applications, data services, and your Azure IoT solutions from malicious threats. For every attack attempted or carried out, you receive a detailed report and recommendations for remediation.

Key benefits include the ability to:

  • Detect and block advanced malware and threats from Linux and Windows Servers on any cloud.
  • Protect cloud-native services from threats.
  • Protect data services against malicious attacks.

Protect your Azure IoT solution with near real-time monitoring.

Develop and secure your custom apps in the cloud

Application Security services

By uniting previously siloed roles of development, operations, security, and testing, DevOps has enabled faster application development. When you’re moving fast, it can be easy to miss a step that could make your apps vulnerable. Microsoft Application Security services offers operations and development tools that help you identify potential threats before you put your application in production. Best-practices documentation and the Secure DevOps toolkit help you build security into your apps.

Our Application Security services also help you secure your open source apps. GitHub can you help you secure your software supply chain and integrate security into your code-to-cloud workflows.

Key benefits include the ability to:

  • Build secure applications faster.
  • Protect every layer of your application.
  • Receive guidance to help you succeed.
  • Understand and secure your open source software supply chain.
  • Integrate security into your open source code-to-code workflows.

Monitor and control user activities and data across all your apps

Cloud Access Security Broker

Our internal data shows that in the average enterprise, users leverage more than 1,000 cloud apps and services, half of which go unmonitored by IT. The increasing number of apps—and the different ways users can access them—challenge IT departments to ensure secure access and protect the flow of critical data. Cloud Access Security Broker services are a new generation of solutions that give IT department tools to address these challenges.

Our leading Cloud Access Security Broker solution, Microsoft Cloud App Security, provides rich visibility into your shadow IT, enables you to identify and remediate cloud native attacks, and allows you to control how your data travels across all of your cloud apps—whether they’re from Microsoft or third-party applications. The solution integrates natively with other leading Security and Identity solutions from the broader Microsoft portfolio to provide you with the simplest deployment and powerful threat intelligence and powerful User and Entity Behavior Analytics (UEBA) to help you address the most modern attacks.

Key benefits include:

  • Centralized monitoring and control for all apps:
    • Discover and control shadow IT.
    • Identify and remediate cloud-native attacks.
    • Protect your information in real-time with powerful inline controls.
  • Built for a seamless admin and user experience:
    • Customizable automation capabilities.
    • Native integrations.
    • Optimized for a global workforce.

Microsoft Cloud App Security

Elevate your security posture by taking control of your cloud environment.


Start free trial

Learn more

Our Cloud Security solutions enable you to safeguard your cross-cloud resources.

The post Microsoft Cloud Security solutions provide comprehensive cross-cloud protection appeared first on Microsoft Security.

Further enhancing security from Microsoft, not just for Microsoft

November 4th, 2019 No comments

Legacy infrastructure. Bolted-on security solutions. Application sprawl. Multi-cloud environments. Company data stored across devices and apps. IT and security resource constraints. Uncertainty of where and when the next attack or leak will come, including from the inside. These are just a few of the things that keep our customers up at night.

When security is only as strong as your weakest link and your environments continue to expand, there’s little room for error. The challenge is real: in this incredibly complex world, you must prevent every attack, every time. Attackers must only land their exploit once. They have the upper hand. To get that control back, we must pair the power of your defenders and human intuition with artificial intelligence (AI) and machine learning that help cut through the noise, prioritize the work, and help you protect, detect, and respond smarter and faster.

Microsoft Threat Protection brings this level of control and security to the modern workplace by analyzing signal intelligence across identities, endpoints, data, cloud applications, and infrastructure.

Today, at the Microsoft Ignite Conference in Orlando, Florida, I’m thrilled to share the significant progress we’re making on delivering endpoint security from Microsoft, not just for Microsoft. The Microsoft Intelligent Security Association (MISA), formed just last year, has already grown to more than 80 members and climbing! These partnerships along with the invaluable feedback we get from our customers have positioned us as leaders in recent analyst reports, including Gartner’s Endpoint Protection Platform Magic Quadrant, Gartner’s Cloud Access Security Broker (CASB) Magic Quadrant and Forrester’s Endpoint Security Suites Wave and more.

As we continue to focus on delivering security innovation for our customers, we are:

  • Reducing the noise with Azure Sentinel—Generally available now, our cloud-native SIEM, Azure Sentinel, enables customers to proactively hunt for threats using the latest queries, see connections between threats with the investigation graph, and automate incident remediation with playbooks.
  • Discovering and controlling Shadow IT with Microsoft Cloud App Security and Microsoft Defender Advanced Threat Protection (ATP)—With a single click, you can discover cloud apps, detect and block risky apps, and coach users.
  • Enhancing hardware security with our partners—We worked across our partner ecosystem to offer stronger protections built into hardware with Secured-core PCs, available now and this holiday season.
  • Offering Application Guard container protection, coming to Office 365—In limited preview now, we will extend the same protections available in Edge today to Office 365.
  • Building automation into Office 365 Advanced Threat Protection for more proactive protection and increased visibility into the email attacker kill chain—We’re giving SecOps teams increased visibility into the attacker kill chain to better stop the spread of attacks by amplifying your ability to detect breaches through new enhanced compromise detection and response in Office 365 ATP, in public preview now. And later this year, we’re adding campaign views to allow security teams to see the full phish campaign and derive key insights for further protection and hunting.
  • Getting a little help from your friends—Sometimes you need another set of eyes, sometimes you need more advanced investigators. Available now, with the new experts on demand service, you can extend the capabilities of your security operations center (SOC) with additional help through Microsoft Defender ATP.
  • Improving your Secure Score—Back up the strength of your team with numbers. New enhancements in Secure Score will make it easier for you to understand, benchmark, and track your progress. We also added new planning capabilities that help you set goals and predict score improvements, and new CISO Metrics & Trends reports that show the impact your work is having on the health of your organization in real-time.
  • Taking another step in cross-platform protection—This month, we’re expanding our promise to offer protections beyond Windows with Enterprise Detection and Response for Apple Macs and Threat and Vulnerability Management for servers.

Microsoft Ignite

Join us online November 4–8, 2019 to livestream keynotes, watch selected sessions on-demand, and more.


Learn more

Infographic showing the Microsoft Intelligent Security Graph: unique insights, informed by trillions of signals from Outlook, OneDrive, Windows, Bing, Xbox Live, Azure, and Microsoft accounts.

There’s no way one person, or even one team, no matter how large could tackle this volume of alerts on a daily basis. The Microsoft Intelligent Security Graph, the foundation for our security solutions, processes 8.2 trillion signals every day. We ground our solutions in this intelligence and build in protections through automation that’s delivered through our cloud-powered solutions, evolving as the threat landscape does. Only this combination will enable us to take back control and deliver on a Zero Trust network with more intelligent proactive protection.

Here’s a bit more about some of the solutions shared above:

Discovering and controlling cloud apps natively on your endpoints

As the volume of cloud applications continues to grow, security and IT departments need more visibility and control to prevent Shadow IT. At last year’s Ignite, we announced the native integration of Microsoft Cloud App Security and Microsoft Defender ATP, which enables our Cloud Access Security Broker (CASB) to leverage the traffic information collected by the endpoint, regardless of the network from which users are accessing their cloud apps. This seamless integration gives security admins a complete view of cloud application and services usage in their organization.

At this year’s Ignite, we’re extending this capability, now in preview, with native access controls based on Microsoft Defender ATP network protection that allows you to block access to risky and non-complaint cloud apps. We also added the ability to coach users who attempt to access restricted apps and provide guidance on how to use cloud apps securely.

Building stronger protections starting with hardware

As we continue to build in stronger protections at the operating system level, we’ve seen attackers shift their techniques to focus on firmware—a near 5x increase in the last three years. That’s why we worked across our vast silicon and first- and third-party PC manufacturing partner ecosystem to build in stronger protections at the hardware level in what we call Secured-core PCs to protect against these kind of targeted attacks. Secured-core PCs combine identity, virtualization, operating system, hardware, and firmware protection to add another layer of security underneath the operating system.

Application Guard container protections coming to Office 365

Secured-core PCs deliver on the Zero Trust model, and we want to further build on those concepts of isolation and minimizing trust. That’s why I’m thrilled to share that the same hardware-level containerization we brought to the browser with Application Guard integrated with Microsoft Edge will be available for Office 365.

This year at Ignite, we are providing an early view of Application Guard capabilities integrated with Office 365 ProPlus. You will be able to open an untrusted Word, Excel, or PowerPoint file in a virtualized container. View, print, edit, and save changes to untrusted Office documents—all while benefiting from that same hardware-level security. If the untrusted file is malicious, the attack is contained and the host machine untouched. A new container is created every time you log in, providing a clean start as well as peace of mind.

When you want to consider the document “trusted,” files are automatically checked against the Microsoft Defender ATP threat cloud before they’re released. This integration with Microsoft Defender ATP provides admins with advanced visibility and response capabilities—providing alerts, logs, confirmation the attack was contained, and visibility into similar threats across the enterprise. To learn more or participate, see the Limited Preview Sign Up.

Automation and impact analysis reinvent Threat and Vulnerability Management

More than two billion vulnerabilities are detected every day by Microsoft Defender ATP and the included Threat and Vulnerability Management capabilities, and we’re adding even more capabilities to this solution.

Going into public preview this month, we have several enhancements, including: vulnerability assessment support for Windows Server 2008R2 and above; integration with Service Now to further improve the communication across IT and security teams; role-based access controls; advanced hunting across vulnerability data; and automated user impact analysis to give you the ability to simulate and test how a configuration change will impact users.

Automation in Office 365 ATP blocked 13.5 billion malicious emails this year

In September, we announced the general availability of Automated Incident Response, a new capability in Office 365 ATP that enables security teams to efficiently detect, investigate, and respond to security alerts. We’re building on that announcement, using the breadth of signals from the Intelligent Security Graph to amplify your ability to detect breaches through new enhanced compromise user detection and response capabilities in Office 365 ATP.

Now in public preview, the solution leverages the insights from mail flow patterns and Office 365 activities to detect impacted users and alert security teams. Automated playbooks then investigate those alerts, look for possible sources of compromise, assess impact, and make recommendations for remediation.

Campaign detections coming to Office 365 ATP

Attackers think in terms of campaigns. They continuously morph their email exploits by changing attributes like sending domains and IP addresses, payloads (URLs and attachments), and email templates attempting to evade detection. With campaign views in Office 365 ATP, you’ll be able to see the entire scope of the campaign targeted at your organization. This includes deep insights into how the protection stack held up against the attack—including where portions of the campaign might have gotten through due to tenant overrides thereby exposing users. This view helps you quickly identify configuration flaws, targeted users, and potentially comprised users to take corrective action and identify training opportunities. Security researchers will be able to use the full list of indicators of compromise involved in the campaign to go hunt further. This capability will be in preview by the end of the year.

Protection across platforms: enterprise detection and response (EDR) for Mac

Work doesn’t happen in just one place. We know that people use a variety of devices and apps from various locations throughout the day, taking business data with them along the way. That means more complexity and a larger attack surface to protect. Microsoft’s Intelligent Security Graph detects five billion threats on devices every month. To strengthen enterprise detection and response (EDR) capabilities for endpoints, we’re adding EDR capabilities to Microsoft Defender ATP for Mac, entering public preview this week. Moving forward, we plan to offer Microsoft Defender ATP for Linux servers, providing additional protection for our customers’ heterogeneous networks.

We understand the pressure defenders are under to keep pace with these evolving threats. We are grateful for the trust you’re putting in Microsoft to help ease the burdens on your teams and help focus your priority work.

Related links

The post Further enhancing security from Microsoft, not just for Microsoft appeared first on Microsoft Security.