Archive

Archive for the ‘Next-gen antivirus’ Category

Machine learning vs. social engineering

Machine learning is a key driver in the constant evolution of security technologies at Microsoft. Machine learning allows Microsoft 365 to scale next-gen protection capabilities and enhance cloud-based, real-time blocking of new and unknown threats. Just in the last few months, machine learning has helped us to protect hundreds of thousands of customers against ransomware, banking Trojan, and coin miner malware outbreaks.

But how does machine learning stack up against social engineering attacks?

Social engineering gives cybercriminals a way to get into systems and slip through defenses. Security investments, including the integration of advanced threat protection services in Windows, Office 365, and Enterprise Mobility + Security into Microsoft 365, have significantly raised the cost of attacks. The hardening of Windows 10 and Windows 10 in S mode, the advancement of browser security in Microsoft Edge, and the integrated stack of endpoint protection platform (EPP) and endpoint detection and response (EDR) capabilities in Windows Defender Advanced Threat Protection (Windows Defender ATP) further raise the bar in security. Attackers intent on overcoming these defenses to compromise devices are increasingly reliant on social engineering, banking on the susceptibility of users to open the gate to their devices.

Modern social engineering attacks use non-portable executable (PE) files like malicious scripts and macro-laced documents, typically in combination with social engineering lures. Every month, Windows Defender AV detects non-PE threats on over 10 million machines. These threats may be delivered as email attachments, through drive-by web downloads, removable drives, browser exploits, etc. The most common non-PE threat file types are JavaScript and VBScript.

Figure 1. Ten most prevalent non-PE threat file types encountered by Windows Defender AV

Non-PE threats are typically used as intermediary downloaders designed to deliver more dangerous executable malware payloads. Due to their flexibility, non-PE files are also used in various stages of the attack chain, including lateral movement and establishing fileless persistence. Machine learning allows us to scale protection against these threats in real-time, often protecting the first victim (patient zero).

Catching social engineering campaigns big and small

In mid-May, a small-scale, targeted spam campaign started distributing spear phishing emails that spoofed a landscaping business in Calgary, Canada. The attack was observed targeting less than 100 machines, mostly located in Canada. The spear phishing emails asked target victims to review an attached PDF document.

When opened, the PDF document presents itself as a secure document that requires action a very common social engineering technique used in enterprise phishing attacks. To view the supposed secure document, the target victim is instructed to click a link within the PDF, which opens a malicious website with a sign-in screen that asks for enterprise credentials.

Phished credentials can then be used for further attacks, including CEO fraud, additional spam campaigns, or remote access to the network for data theft or ransomware. Our machine learning blocked the PDF file as malware (Trojan:Script/Cloxer.A!cl) from the get-go, helping prevent the attack from succeeding.

Figure 2. Phishing email campaign with PDF attachment

Beyond targeted credential phishing attacks, we commonly see large-scale malware campaigns that use emails with archive attachments containing malicious VBScript or JavaScript files. These emails typically masquerade as an outstanding invoice, package delivery, or parking ticket, and instruct targets of the attack to refer to the attachment for more details. If the target opens the archive and runs the script, the malware typically downloads and runs further threats like ransomware or coin miners.

Figure 3. Typical social engineering email campaign with an archive attachment containing a malicious script

Malware campaigns like these, whether limited and targeted or large-scale and random, occur frequently. Attackers go to great lengths to avoid detection by heavily obfuscating code and modifying their attack code for each spam wave. Traditional methods of manually writing signatures identifying patterns in malware cannot effectively stop these attacks. The power of machine learning is that it is scalable and can be powerful enough to detect noisy, massive campaigns, but also specific enough to detect targeted attacks with very few signals. This flexibility means that we can stop a wide range of modern attacks automatically at the onset.

Machine learning models zero in on non-executable file types

To fight social engineering attacks, we build and train specialized machine learning models that are designed for specific file types.

Building high-quality specialized models requires good features for describing each file. For each file type, the full contents of hundreds of thousands of files are analyzed using large-scale distributed computing. Using machine learning, the best features that describe the content of each file type are selected. These features are deployed to the Windows Defender AV client to assist in describing the content of each file to machine learning models.

In addition to these ML-learned features, the models leverage expert researcher-created features and other useful file metadata to describe content. Because these ML models are trained for specific file types, they can zone in on the metadata of these file types.

Figure 4. Specialized file type-specific client ML models are paired with heavier cloud ML models to classify and protect against malicious script files in real-time

When the Windows Defender AV client encounters an unknown file, lightweight local ML models search for suspicious characteristics in the files features. Metadata for suspicious files are sent to the cloud protection service, where an array of bigger ML classifiers evaluate the file in real-time.

In both the client and the cloud, specialized file-type ML classifiers add to generic ML models to create multiple layers of classifiers that detect a wide range of malicious behavior. In the backend, deep-learning neural network models identify malicious scripts based on their full file content and behavior during detonation in a controlled sandbox. If a file is determined malicious, it is not allowed to run, preventing infection at the onset.

File type-specific ML classifiers are part of metadata-based ML models in the Windows Defender AV cloud protection service, which can make a verdict on suspicious files within a fraction of a second.

Figure 5. Layered machine learning models in Windows Defender ATP

File type-specific ML classifiers are also leveraged by ensemble models that learn and combine results from the whole array of cloud classifiers. This produces a comprehensive cloud-based machine learning stack that can protect against script-based attacks, including zero-day malware and highly targeted attacks. For example, the targeted phishing attack in mid-May was caught by a specialized PDF client-side machine learning model, as well as several cloud-based machine learning models, protecting customers in real-time.

Microsoft 365 threat protection powered by artificial intelligence and data sharing

Social engineering attacks that use non-portable executable (PE) threats are pervasive in todays threat landscape; the impact of combating these threats through machine learning is far-reaching.

Windows Defender AV combines local machine learning models, behavior-based detection algorithms, generics, and heuristics with a detonation system and powerful ML models in the cloud to provide real-time protection against polymorphic malware. Expert input from researchers, advanced technologies like Antimalware Scan Interface (AMSI), and rich intelligence from the Microsoft Intelligent Security Graph continue to enhance next-generation endpoint protection platform (EPP) capabilities in Windows Defender Advanced Threat Protection.

In addition to antivirus, components of Windows Defender ATPs interconnected security technologies defend against the multiple elements of social engineering attacks. Windows Defender SmartScreen in Microsoft Edge (also now available as a Google Chrome extension) blocks access to malicious URLs, such as those found in social engineering emails and documents. Network protection blocks malicious network communications, including those made by malicious scripts to download payloads. Attack surface reduction rules in Windows Defender Exploit Guard block Office-, script-, and email-based threats used in social engineering attacks. On the other hand, Windows Defender Application Control can block the installation of untrusted applications, including malware payloads of intermediary downloaders. These security solutions protect Windows 10 and Windows 10 in S mode from social engineering attacks.

Further, Windows Defender ATP endpoint detection and response (EDR) uses the power of machine learning and AMSI to unearth script-based attacks that live off the land. Windows Defender ATP allows security operations teams to detect and mitigate breaches and cyberattacks using advanced analytics and a rich detection library. With the April 2018 Update, automated investigation and advance hunting capabilities further enhance Windows Defender ATP. Sign up for a free trial.

Machine learning also powers Office 365 Advanced Threat Protection to detect non-PE attachments in social engineering spam campaigns that distribute malware or steal user credentials. This enhances the Office 365 ATP comprehensive and multi-layered solution to protect mailboxes, files, online storage, and applications against threats.

These and other technologies power Microsoft 365 threat protection to defend the modern workplace. In Windows 10 April 2018 Update, we enhanced signal sharing across advanced threat protection services in Windows, Office 365, and Enterprise Mobility + Security through the Microsoft Intelligent Security Graph. This integration enables these technologies to automatically update protection and detection and orchestrate remediation across Microsoft 365.

 

Gregory Ellison and Geoff McDonald
Windows Defender Research

 

 

 

 


Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft community and Windows Defender Security Intelligence.

Follow us on Twitter @WDSecurity and Facebook Windows Defender Security Intelligence.

Detonating a bad rabbit: Windows Defender Antivirus and layered machine learning defenses

December 11th, 2017 No comments

Windows Defender Antivirus uses a layered approach to protection: tiers of advanced automation and machine learning models evaluate files in order to reach a verdict on suspected malware. While Windows Defender AV detects a vast majority of new malware files at first sight, we always strive to further close the gap between malware release and detection.

In a previous blog post, we looked at a real-world case study showing how Windows Defender Antivirus cloud protection service leverages next-gen security technologies to save “patient zero” from new malware threats in real-time. In that case study, a new Spora ransomware variant was analyzed and blocked within seconds using a deep neural network (DNN) machine learning classifier in the cloud. In this blog post well look at how additional automated analysis and machine learning models can further protect customers within minutes in rare cases where initial classification is inconclusive.

Layered machine learning models

In Windows Defender AVs layered approach to defense, if the first layer doesnt detect a threat, we move on to the next level of inspection. As we move down the layers, the amount of time required increases. However, we catch the vast majority of malware at the first (fastest) protection layers and only need to move on to a more sophisticated (but slower) level of inspection for rarer/more advanced threats.

For example, the vast majority of scanned objects are evaluated by the local Windows Defender client machine learning models, behavior-based detection algorithms, generic and heuristic classifications, and more. This helps ensure that users get the best possible performance. In rare cases where local intelligence cant reach a definitive verdict, Windows Defender AV will use the cloud for deeper analysis.

Figure 1. Layered detection model

For a more detailed look at our approach to protection, see The evolution of malware prevention.

Detonation-based machine learning classification

We use a variety of machine learning models that use different algorithms to predict whether a certain file is malware. Some of these algorithms are binary classifiers that give a strict clean-or-malware verdict (0 or 1), while others are multi-class classifiers that provide a probability for each classification (malware, clean, potentially unwanted application, etc). Each machine learning model is trained against a set of different features (often thousands, sometimes hundreds of thousands) to learn to distinguish between different kinds of programs.

For the fastest classifiers in our layered stack, the features may include static attributes of the file combined with events (for example, API calls or behaviors) seen while the scanning engine emulates the file using dynamic translation. If the results from these models are inconclusive, well take an even more in-depth look at what the malware does by actually executing it in a sandbox and observing its run-time behavior. This is known as dynamic analysis, or detonation, and happens automatically whenever we receive a new suspected malware sample.

The activities seen in the sandbox machine (for example, registry changes, file creation/deletion, process injection, network connections, and so forth) are recorded and provided as features to our ML models. These models can then combine both the static features obtained from scanning the file with the dynamic features observed during detonation to arrive at an even stronger prediction.

Figure 2. Detonation-based machine learning classification

Ransom:Win32/Tibbar.A Protection in 14 minutes

On October 24, 2017, in the wake of recent ransomware outbreaks such as Wannacry and NotPetya, news broke of a new threat spreading, primarily in Ukraine and Russia: Ransom:Win32/Tibbar.A (popularly known as Bad Rabbit).

This threat is a good example of how detonation-based machine learning came into play to protect Windows Defender AV customers. First though, lets look at what happened to patient zero.

At 11:17 a.m. local time on October 24, a user running Windows Defender AV in St. Petersburg, Russia was tricked into downloading a file named FlashUtil.exe from a malicious website. Instead of a Flash update, the program was really the just-released Tibbar ransomware.

Windows Defender AV scanned the file and determined that it was suspicious. A query was sent to the cloud protection service, where several metadata-based machine learning models found the file suspicious, but not with a high enough probability to block. The cloud protection service requested that Windows Defender AV client to lock the file, upload it for processing, and wait for a decision.

Within a few seconds the file was processed, and sample-analysis-based ML models returned their conclusions. In this case, a multi-class deep neural network (DNN) machine learning classifier correctly classified the Tibbar sample as malware, but with only an 81.6% probability score. In order to avoid false positives, cloud protection service is configured by default to require at least 90% probability to block the malware (these thresholds are continually evaluated and fine-tuned to find the right balance between blocking malware while avoiding the blocking of legitimate programs). In this case, the ransomware was allowed to run.

Figure 3. Ransom:Win32/Tibbar.A ransom note

Detonation chamber

In the meantime, while patient zero and eight other unfortunate victims (in Ukraine, Russia, Israel, and Bulgaria) contemplated whether to pay the ransom, the sample was detonated and details of the system changes made by the ransomware were recorded.

Figure 4. Sample detonation events used by the machine learning model

As soon as the detonation results were available, a multi-class deep neural network (DNN) classifier that used both static and dynamic features evaluated the results and classified the sample as malware with 90.7% confidence, high enough for the cloud to start blocking.

When a tenth Windows Defender AV customer in the Ukraine was tricked into downloading the ransomware at 11:31 a.m. local time, 14 minutes after the first encounter, cloud protection service used the detonation-based malware classification to immediately block the file and protect the customer.

At this point the cloud protection service had “learned” that this file was malware. It now only required metadata from the client with the hash of the file to issue blocking decisions and protect customers. As the attack gained momentum and began to spread, Windows Defender AV customers with cloud protection enabled were protected. Later, a more specific detection was released to identify the malware as Ransom:Win32/Tibbar.A.

Closing the gap

While we feel good about Windows Defender AV’s layered approach to protection, digging deeper and deeper with automation and machine learning in order to finally reach a verdict on suspected malware, we are continually seeking to close the gap even further between malware release and protection. The cases where we cannot block at first sight are increasingly rare, but there is so much to be done. As our machine learning models are continuously updated and retrained, we are able to make better predictions over time. Yet malware authors will not rest, and the ever-changing threat landscape requires continuous investment in new and better technologies to detect new threats, but also to effectively differentiate the good from the bad.

What about systems that do get infected while detonation and classification are underway? One area that we’re actively investing in is advanced remediation techniques that will let us reach back out to those systems in an organization that were vulnerable and, if possible, get them back to a healthy state.

If you are organization that is willing to accept a higher false positive risk in exchange for stronger protection, you can configure the cloud protection level to tell the Windows Defender AV cloud protection service to take a more aggressive stance towards suspicious files, such as blocking at lower machine learning probability thresholds. In the Tibbar example above, for example, a configuration like this could have protected patient zero using the initial 81% confidence score, and not wait for the higher confidence (detonation-based) result that came later. You can also configure the cloud extended timeout to give the cloud protection service more time to evaluate a first-seen threat.

As another layer of real-time protection against ransomware, enable Controlled folder access, which is one of the features of the new Windows Defender Exploit Guard. Controlled folder access protects files from tampering by locking folders so that ransomware and other unauthorized apps cant access them.

For enterprises, Windows Defender Exploit Guards other features (Attack Surface Reduction, Exploit protection, and Network protection) further protect networks from advanced attacks. Windows Defender Advanced Threat Protection can also alert security operations personnel about malware activities in the network so that personnel can promptly investigate and respond to attacks.

For users running Windows 10 S, malware like Tibbar simply wont run. Windows 10 S provides advanced levels of security by exclusively running apps from the Microsoft Store. Threats such as Tibbar are non-issues for Windows 10 S users. Learn more about Windows 10 S.

New machine learning and AI techniques, in combination with both static and dynamic analysis, gives Windows Defender AV the ability to block more and more malware threats at first sight and, if that fails, learn as quickly as possible that something is bad and start blocking it. Using a layered approach, with different ML models at each layer, gives us the ability to target a wide variety of threats quickly while maintaining low false positive rates. As we gather more data about a potential threat, we can provide predictions with higher and higher confidence and take action accordingly. It is an exciting time to be in the fray.

 

Randy Treit

Senior Security Researcher, Windows Defender Research

 

 


Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft community and Windows Defender Security Intelligence.

Follow us on Twitter @WDSecurity and Facebook Windows Defender Security Intelligence.

 

Windows Defender ATP machine learning and AMSI: Unearthing script-based attacks that ‘live off the land’

December 4th, 2017 No comments

Data center

Scripts are becoming the weapon of choice of sophisticated activity groups responsible for targeted attacks as well as malware authors who indiscriminately deploy commodity threats.

Scripting engines such as JavaScript, VBScript, and PowerShell offer tremendous benefits to attackers. They run through legitimate processes and are perfect tools for living off the landstaying away from the disk and using common tools to run code directly in memory. Often part of the operating system, scripting engines can evaluate and execute content from the internet on-the-fly. Furthermore, integration with popular apps make them effective vehicles for delivering malicious implants through social engineering as evidenced by the increasing use of scripts in spam campaigns.

Malicious scripts are not only used as delivery mechanisms. We see them in various stages of the kill chain, including during lateral movement and while establishing persistence. During these latter stages, the scripting engine of choice is clearly PowerShellthe de facto scripting standard for administrative tasks on Windowswith the ability to invoke system APIs and access a variety of system classes and objects.

While the availability of powerful scripting engines makes scripts convenient tools, the dynamic nature of scripts allows attackers to easily evade analysis and detection by antimalware and similar endpoint protection products. Scripts are easily obfuscated and can be loaded on-demand from a remote site or a key in the registry, posing detection challenges that are far from trivial.

Windows 10 provides optics into script behavior through Antimalware Scan Interface (AMSI), a generic, open interface that enables Windows Defender Antivirus to look at script contents the same way script interpreters doin a form that is both unencrypted and unobfuscated. In Windows 10 Fall Creators Update, with knowledge from years analyzing script-based malware, weve added deep behavioral instrumentation to the Windows script interpreter itself, enabling it to capture system interactions originating from scripts. AMSI makes this detailed interaction information available to registered AMSI providers, such as Windows Defender Antivirus, enabling these providers to perform further inspection and vetting of runtime script execution content.

This unparalleled visibility into script behavior is capitalized further through other Windows 10 Fall Creators Update enhancements in both Windows Defender Antivirus and Windows Defender Advanced Threat Protection (Windows Defender ATP). Both solutions make use of powerful machine learning algorithms that process the improved optics, with Windows Defender Antivirus delivering enhanced blocking of malicious scripts pre-breach and Windows Defender ATP providing effective behavior-based alerting for malicious post-breach script activity.

In this blog, we explore how Windows Defender ATP, in particular, makes use of AMSI inspection data to surface complex and evasive script-based attacks. We look at advanced attacks perpetrated by the highly skilled KRYPTON activity group and explore how commodity malware like Kovter abuses PowerShell to leave little to no trace of malicious activity on disk. From there, we look at how Windows Defender ATP machine learning systems make use of enhanced insight about script characteristics and behaviors to deliver vastly improved detection capabilities.

KRYPTON: Highlighting the resilience of script-based attacks

Traditional approaches for detecting potential breaches are quite file-centric. Incident responders often triage autostart entries, sorting out suspicious files by prevalence or unusual name-folder combinations. With modern attacks moving closer towards being completely fileless, it is crucial to have additional sensors at relevant choke points.

Apart from not having files on disk, modern script-based attacks often store encrypted malicious content separately from the decryption key. In addition, the final key often undergoes multiple processes before it is used to decode the actual payload, making it is impossible to make a determination based on a single file without tracking the actual invocation of the script. Even a perfect script emulator would fail this task.

For example, the activity group KRYPTON has been observed hijacking or creating scheduled tasksthey often target system tasks found in exclusion lists of popular forensic tools like Autoruns for Windows. KRYPTON stores the unique decryption key within the parameters of the scheduled task, leaving the actual payload content encrypted.

To illustrate KRYPTON attacks, we look at a tainted Microsoft Word document identified by John Lambert and the Office 365 Advanced Threat Protection team.

KRYPTON lure document

Figure 1. KRYPTON lure document

To live off the land, KRYPTON doesnt drop or carry over any traditional malicious binaries that typically trigger antimalware alerts. Instead, the lure document contains macros and uses the Windows Scripting Host (wscript.exe) to execute a JavaScript payload. This script payload executes only with the right RC4 decryption key, which is, as expected, stored as an argument in a scheduled task. Because it can only be triggered with the correct key introduced in the right order, the script payload is resilient against automated sandbox detonations and even manual inspection.

KRYPTON script execution chain through wscript.exe

Figure 2. KRYPTON script execution chain through wscript.exe

Exposing actual script behavior with AMSI

AMSI overcomes KRYPTONs evasion mechanisms by capturing JavaScript API calls after they have been decrypted and ready to be executed by the script interpreter. The screenshot below shows part of the exposed content from the KRYPTON attack as captured by AMSI.

Part of the KRYPTON script payload captured by AMSI and sent to the cloud for analysis

Figure 3. Part of the KRYPTON script payload captured by AMSI and sent to the cloud for analysis

By checking the captured script behavior against indicators of attack (IoAs) built up by human experts as well as machine learning algorithms, Windows Defender ATP effortlessly flags the KRYPTON scripts as malicious. At the same time, Windows Defender ATP provides meaningful contextual information, including how the script is triggered by a malicious Word document.

Windows Defender ATP machine learning detection of KRYPTON script captured by AMSI

Figure 4. Windows Defender ATP machine learning detection of KRYPTON script captured by AMSI

PowerShell use by Kovter and other commodity malware

Not only advanced activity groups like KRYPTON are shifting from binary executables to evasive scripts. In the commodity space, Kovter malware uses several processes to eventually execute its malicious payload. This payload resides in a PowerShell script decoded by a JavaScript (executed by wscript.exe) and passed to powershell.exe as an environment variable.

Windows Defender ATP machine learning alert for the execution of the Kovter script-based payload

Figure 5. Windows Defender ATP machine learning alert for the execution of the Kovter script-based payload

By looking at the PowerShell payload content captured by AMSI, experienced analysts can easily spot similarities to PowerSploit, a publicly available set of penetration testing modules. While such attack techniques involve file-based components, they remain extremely hard to detect using traditional methods because malicious activities occur only in memory. Such behavior, however, is effortlessly detected by Windows Defender ATP using machine learning that combines detailed AMSI signals with signals generated by PowerShell activity in general.

Part of the Kovter script payload captured by AMSI and sent to the cloud for analysis

Figure 6. Part of the Kovter script payload captured by AMSI and sent to the cloud for analysis

Fresh machine learning insight with AMSI

While AMSI provides rich information from captured script content, the highly variant nature of malicious scripts continues to make them challenging targets for detection. To efficiently extract and identify new traits differentiating malicious scripts from benign ones, Windows Defender ATP employs advanced machine learning methods.

As outlined in our previous blog, we employ a supervised machine learning classifier to identify breach activity. We build training sets based on malicious behaviors observed in the wild and normal activities on typical machines, augmenting that with data from controlled detonations of malicious artifacts. The diagram below conceptually shows how we capture malicious behaviors in the form of process trees.

Process tree augmented by instrumentation for AMSI data

Figure 7. Process tree augmented by instrumentation for AMSI data

As shown in the process tree, the kill chain begins with a malicious document that causes Microsoft Word (winword.exe) to launch PowerShell (powershell.exe). In turn, PowerShell executes a heavily obfuscated script that drops and executes the malware fhjUQ72.tmp, which then obtains persistence by adding a run key to the registry. From the process tree, our machine learning systems can extract a variety of features to build expert classifiers for areas like registry modification and file creation, which are then converted into numeric scores that are used to decide whether to raise alerts.

With the instrumentation of AMSI signals added as part of the Windows 10 Fall Creators Update (version 1709), Windows Defender ATP machine learning algorithms can now make use of insight into the unobfuscated script content while continually referencing machine state changes associated with process activity. Weve also built a variety of script-based models that inspect the nature of executed scripts, such as the count of obfuscation layers, entropy, obfuscation features, ngrams, and specific API invocations, to name a few.

As AMSI peels off the obfuscation layers, Windows Defender ATP benefits from growing visibility and insight into API calls, variable names, and patterns in the general structure of malicious scripts. And while AMSI data helps improve human expert knowledge and their ability to train learning systems, our deep neural networks automatically learn features that are often hidden from human analysts.

Machine-learning detections of JavaScript and PowerShell scripts

Figure 8. Machine learning detections of JavaScript and PowerShell scripts

While these new script-based machine learning models augment our expert classifiers, we also correlate new results with other behavioral information. For example, Windows Defender ATP correlates the detection of suspicious script contents from AMSI with other proximate behaviors, such as network connections. This contextual information is provided to SecOps personnel, helping them respond to incidents efficiently.

Machine learning combines VBScript content from AMSI and tracked network activity

Figure 9. Machine learning combines VBScript content from AMSI and tracked network activity

Detection of AMSI bypass attempts

With AMSI providing powerful insight into malicious script activity, attacks are more likely to incorporate AMSI bypass mechanisms that we group into three categories:

  • Bypasses that are part of the script content and can be inspected and alerted on
  • Tampering with the AMSI sensor infrastructure, which might involve the replacement of system files or manipulation of the load order of relevant DLLs
  • Patching of AMSI instrumentation in memory

The Windows Defender ATP research team proactively develops anti-tampering mechanisms for all our sensors. We have devised heuristic alerts for possible manipulation of our optics, designing these alerts so that they are triggered in the cloud before the bypass can suppress them.

During actual attacks involving CVE-2017-8759, Windows Defender ATP not only detected malicious post-exploitation scripting activity but also detected attempts to bypass AMSI using code similar to one identified by Matt Graeber.

Windows Defender ATP alert based on AMSI bypass pattern

Figure 10. Windows Defender ATP alert based on AMSI bypass pattern

AMSI itself captured the following bypass code for analysis in the Windows Defender ATP cloud.

AMSI bypass code sent to the cloud for analysis

Figure 11. AMSI bypass code sent to the cloud for analysis

Conclusion: Windows Defender ATP machine learning and AMSI provide revolutionary defense against highly evasive script-based attacks

Provided as an open interface on Windows 10, Antimalware Scan Interface delivers powerful optics into malicious activity hidden in encrypted and obfuscated scripts that are oftentimes never written to disk. Such evasive use of scripts is becoming commonplace and is being employed by both highly skilled activity groups and authors of commodity malware.

AMSI captures malicious script behavior by looking at script content as it is interpreted, without having to check physical files or being hindered by obfuscation, encryption, or polymorphism. At the endpoint, AMSI benefits local scanners, providing the necessary optics so that even obfuscated and encrypted scripts can be inspected for malicious content. Windows Defender Antivirus, specifically, utilizes AMSI to dynamically inspect and block scripts responsible for dropping all kinds of malicious payloads, including ransomware and banking trojans.

With Windows 10 Fall Creators Update (1709), newly added script runtime instrumentation provides unparalleled visibility into script behaviors despite obfuscation. Windows Defender Antivirus uses this treasure trove of behavioral information about malicious scripts to deliver pre-breach protection at runtime. To deliver post-breach defense, Windows Defender ATP uses advanced machine learning systems to draw deeper insight from this data.

Apart from looking at specific activities and patterns of activities, new machine learning algorithms in Windows Defender ATP look at script obfuscation layers, API invocation patterns, and other features that can be used to efficiently identify malicious scripts heuristically. Windows Defender ATP also correlates script-based indicators with other proximate activities, so it can deliver even richer contextual information about suspected breaches.

To benefit from the new script runtime instrumentation and other powerful security enhancements like Windows Defender Exploit Guard, customers are encourage to install Windows 10 Fall Creators Update.

Read the The Total Economic Impact of Microsoft Windows Defender Advanced Threat Protection from Forrester to understand the significant cost savings and business benefits enabled by Windows Defender ATP. To directly experience how Windows Defender ATP can help your enterprise detect, investigate, and respond to advance attacks, sign up for a free trial.

 

Stefan Sellmer, Windows Defender ATP Research

with

Shay Kels, Windows Defender ATP Research

Karthik Selvaraj, Windows Defender Research

 

Additional readings

 


Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft community and Windows Defender Security Intelligence.

Follow us on Twitter @WDSecurity and Facebook Windows Defender Security Intelligence.