Microsoft shares new threat intelligence, security guidance during global crisis

April 8th, 2020 No comments

Ready or not, much of the world was thrust into working from home, which means more people and devices are now accessing sensitive corporate data across home networks. Defenders are working round the clock to secure endpoints and ensure the fidelity of not only those endpoints, but also identities, email, and applications, as people are using whatever device they need to get work done. This isn’t something anyone, including our security professionals, were given time to prepare for, yet many customers have been thrust into a new environment and challenged to respond quickly. Microsoft is here to help lighten the load on defenders, offer guidance on what to prioritize to keep your workforce secure, and share resources about the built-in protections of our products.

Attackers are capitalizing on fear. We’re watching them. We’re pushing back.

Our inboxes, mobile alerts, TVs, and news updates are all COVID-19, all the time. It’s overwhelming and attackers know it. They know many are clicking without looking because stress levels are high and they’re taking advantage of that. That’s why we’re seeing an increase in the success of phishing and social engineering attacks. Attackers don’t suddenly have more resources they’re diverting towards tricking users; instead they’re pivoting their existing infrastructure, like ransomware, phishing, and other malware delivery tools, to include COVID-19 keywords that get us to click. Once we click, they can infiltrate our inboxes, steal our credentials, share more malicious links with coworkers across collaboration tools, and lie in wait to steal information that will give them the biggest payout. This is where intelligent solutions that can monitor for malicious activity across – that’s the key word – emails, identities, endpoints, and applications with built-in automation to proactively protect, detect, respond to, and prevent these types of attacks from being successful will help us fight this battle against opportunistic attackers.

Our threat intelligence teams at Microsoft are actively monitoring and responding to this shift in focus. Our data shows that these COVID-19 themed threats are retreads of existing attacks that have been slightly altered to tie to this pandemic. This means we’re seeing a changing of lures, not a surge in attacks. Our intelligence shows that these attacks are settling into a rhythm that is the normal ebb and flow of the threat environment:

  • Every country in the world has seen at least one COVID-19 themed attack (see map below). The volume of successful attacks in outbreak-hit countries is increasing, as fear and the desire for information grows. Our telemetry shows that China, the United States, and Russia have been hit the hardest.
  • The trendy and pervasive Trickbot and Emotet malware families are very active and rebranding their lures to take advantage of the outbreak. We have observed 76 threat variants to date globally using COVID-19 themed lures (map below).
  • Microsoft tracks thousands of email phishing campaigns that cover millions of malicious messages every week. Phishing campaigns are more than just one targeted email at one targeted user. They include potentially hundreds or thousands of malicious emails targeting hundreds or thousands of users, which is why they can be so effective. Of the millions of targeted messages we see each day, roughly 60,000 include COVID-19 related malicious attachments or malicious URLs.
  • While that number sounds very large, it’s important to note that that is less than two percent of the total volume of threats we actively track and protect against daily, which reinforces that the overall volume of threats is not increasing but attackers are shifting their techniques to capitalize on fear. Attackers are impersonating established entities like the World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and the Department of Health to get into inboxes. Here’s an example of what just one of these malicious emails looks like now compared to before the COVID-19 crisis:

Comparison of malicious emails used in malware campaigns before the crisis and during

  • In a single day, SmartScreen sees and processes more than 18,000 malicious COVID-19-themed URLs and IP addresses. This again shows us that attackers are getting more aggressive and agile in the delivery of their attacks – using the same delivery methods, but swapping out the malicious URLs on a more frequent basis in an effort to evade machine learning protections.
  • Microsoft Office 365 Advanced Threat Protection prevented a big phishing campaign that used a fake Office 365 sign-in page to capture credentials. Roughly 2,300 unique HTML attachments posing as COVID-19 financial compensation information were caught in 24 hours in this one campaign. We expect to see more campaigns that utilize the economic fear from lost income, as governments widen the mandatory shutdown of their economies and stimulus funds begin to be issued in the U.S.
  • Several advanced persistent threat and nation-state actors have been observed targeting healthcare organizations and using COVID-19-themed lures in their campaigns. We continue to identify, track, and build proactive protections against these threats in all of our security products. When customers are affected by these attacks, Microsoft notifies the customer directly to help speed up investigations. We also report malicious COVID-19-themed domains and URLs to the proper authorities so that they can be taken down, and where possible, the individuals behind them prosecuted.

Map showing global impact of COVID-19-themed-attacks

Relative impact of COVID-19 themed attacks across the world by file count (as of April 7, 2020)

From endpoints and identities to the cloud, we have you covered

While phishing email is a common attack vector, it’s only one of the many points of entry for attackers. Defenders need a much broader view and solutions for remediation than visibility into just one entry method. An attacker’s primary goal is to gain entry and expand across domains so they can persist in an organization and lie in wait to steal or encrypt as much sensitive information as they can to reap the biggest payout. Defenders require visibility across each of these domains and automated correlation across emails, identities, endpoints, and cloud applications to see the full scope of compromise. Only with this view can defenders adequately remediate affected assets, apply Conditional Access, and prevent the same or similar attacks from being successful again.

During this trying time, we want to remind our customers what protections you have built into our products and offer guidance for what to prioritize:

  • Protect endpoints with Microsoft Defender ATP, which covers licensed users for up to five concurrent devices that can be easily onboarded at any time. Microsoft Defender ATP monitors threats from across platforms, including macOS. Our tech community post includes additional guidance, best practices, onboarding, and licensing information.
  • Enable multi-factor authentication (MFA) and Conditional Access through Azure Active Directory to protect identities. This is more important than ever to mitigate credential compromise as users work from home. We recommend connecting all apps to Azure AD for single sign-on – from SaaS to on-premises apps; enabling MFA and applying Conditional Access policies; and extending secure access to contractors and partners. Microsoft also offers a free Azure AD service for single sign-on, including MFA using the Microsoft Authenticator app.
  • Safeguard inboxes and email accounts with Office 365 ATP, Microsoft’s cloud-based email filtering service, which shields against phishing and malware, including features to safeguard your organization from messaging-policy violations, targeted attacks, zero-days, and malicious URLs. Intelligent recommendations from Security Policy Advisor can help reduce macro attack surface, and the Office Cloud Policy Service can help you implement security baselines.
  • Microsoft Cloud App Security can help protect against shadow IT and unsanctioned app usage, identify and remediate cloud-native attacks, and control how data travels across cloud apps from Microsoft or third-party applications.

Microsoft Threat Protection correlates signals from across each of these domains using Azure ATP, Microsoft Defender ATP, Office 365 ATP, and Microsoft Cloud App Security, to understand the entire attack chain to help defenders prioritize which threats are most critical to address and to auto-heal affected user identities, email inboxes, endpoints, and cloud apps back to a safe state. Our threat intelligence combines signals from not just one attack vector like email phishing, but from across emails, identities, endpoints, and cloud apps to understand how the threat landscape is changing and build that intelligence into our products to prevent attack sprawl and persistence. The built-in, automated remediation capabilities across these solutions can also help reduce the manual workload on defenders that comes from the multitude of new devices and connections.

Azure Sentinel is a cloud-native SIEM that brings together insights from Microsoft Threat Protection and Azure Security Center, along with the whole world of third-party and custom application logs to help security teams gain visibility, triage, and investigate threats across their enterprise. As with all Microsoft Security products, Azure Sentinel customers benefit from Microsoft threat intelligence to detect and hunt for attacks. Azure Sentinel makes it easy to add new data sources and scale existing ones with built-in workbooks, hunting queries, and analytics to help teams identify, prioritize, and respond to threats. We recently shared a threat hunting notebook developed to hunt for COVID-19 related threats in Azure Sentinel.

Cloud-delivered protections are a critical part of staying up to date with the latest security updates and patches. If you don’t already have them turned on, we highly recommend it. We also offer advanced hunting through both Microsoft Threat Protection and Azure Sentinel.

We’ll keep sharing and protecting – stay tuned, stay safe

Remember that we at Microsoft are 3,500 defenders strong. We’re very actively monitoring the threat landscape, we’re here to help: we’re providing resources, guidance, and for dire cases we have support available from services like the Microsoft Detection and Response (DART) team to help investigate and remediate.

All of our guidance related to COVID-19 is and will be posted here. We will continue to share updates across channels to keep you informed. Please stay safe, stay connected, stay informed.

THANK YOU to our defenders who are working tirelessly to keep us secure and connected during this pandemic.

 

 

-Rob and all of us from across Microsoft security

 

 

To stay up to date with verified information on the COVID-19 crisis, the following sites are available:

 

The post Microsoft shares new threat intelligence, security guidance during global crisis appeared first on Microsoft Security.

Mobile security—the 60 percent problem

April 7th, 2020 No comments

Off the top of your head, what percentage of endpoints in your organization are currently protected?

Something in the 98 percent+ range?

Most enterprises would say having fewer than 2 percent of endpoint devices lacking adequate security would be considered good given the various changes, updates, etc. However, enterprises have traditionally focused security and compliance efforts on traditional computing devices (for example, servers, desktops, and laptops), which represent just 40 percent of the relevant endpoints. The remaining 60 percent of endpoints are mobile devices and are woefully under-protected. That’s a problem.

Mobile security is more important than ever

Mobile devices, both corporate-owned and bring your own device (BYOD), are now the dominant productivity platform in any enterprise organization, with more than 80 percent of daily work performed on a mobile device. These devices operate extensively outside of corporate firewalls, in the hands of users who may not prioritize precautions like vetting Wi-Fi networks or keeping their devices patched and updated. Mobile often represents a wandering corporate data repository.

These factors combine to cause headaches for security teams because, in short, mobile security has a significant gap in most organizations’ endpoint protection strategies.

The lack of protection for (and visibility into) these endpoints introduces significant risk and compliance concerns that show no sign of slowing down. Here are some statistics from Zimperium’s State of Enterprise Mobile Security Report, 2019, which contains data from more than 45 million anonymized endpoints from enterprises in a variety of industries and both local and national government agencies from around the world:

  • Mobile OS vendors created patches for 1,161 security vulnerabilities in 2019.
  • At the end of 2019, 48 percent of iOS devices were more than four versions behind the latest OS version and 58 percent of Android devices were more than two versions behind.
  • Twenty-four percent of enterprise mobile endpoints were exposed to device threats, not including outdated operating systems.
  • Nineteen percent of enterprise mobile endpoints experienced network-based attacks.
  • Sixty-eight percent of malicious profiles were considered “high-risk,” meaning they had elevated access that could lead to data exfiltration or full compromise.

Microsoft and Zimperium deliver comprehensive mobile security

The combination of Microsoft’s management and security solutions and Zimperium’s unique on-device mobile device security delivers unequaled protection for managed and unmanaged BYOD devices. Together, Microsoft and Zimperium have delivered numerous innovations for customers in areas such as:

An endpoint is an endpoint is an endpoint, and they all must be protected

Organizations now realize mobile devices are an unprotected endpoint with possible access to or containing the information of a traditional endpoint. And while there are some overlaps in what you protect—email, calendars, etc.—the way you solve the traditional endpoint security problem is completely different than how you solve the mobile security problem.

So, what does all this really mean for an enterprise?

For a joint Microsoft and Zimperium international banking customer with employees in nine countries using 17,000 corporate and BYOD mobile devices, it means knowing that you are protected with Microsoft Endpoint Manager on Azure. It means knowing how many of your employees are putting your enterprise at risk with outdated iOS versions and high-risk profiles. It means having the ability to remediate and monitor your endpoints with one console. Our customer is in control of its infrastructure choices versus having the vendor forcing a solution. In addition, both iOS and Android platforms are supported and protected. If a user were to switch from one device to another that runs a different OS, the person would simply re-download the Zimperium app and activate.

Once deployed, the solution is capable of simultaneously integrating with unified endpoint solutions (UEM) solutions from multiple vendors. In other words, part of the organization, or specified users, can be managed with one UEM solution, and part of it by another. For joint Zimperium and Microsoft customers, this capability simplifies the migration from a third-party UEM to Microsoft Endpoint Manager while maintaining security during the migration. Zimperium provides visibility and security across the mobile infrastructure for customers who may have multiple UEM solutions deployed.

About Zimperium

Zimperium, the global leader in mobile device and app security, offers real-time, on-device protection against Android and iOS threats. The Zimperium platform leverages our award-winning machine-learning-based engine—z9—to protect mobile data, apps, and sessions against device compromises, network attacks, phishing attempts, and malicious apps.

To date, z9 has detected 100 percent of zero-day device exploits without requiring an update or suffering from the delays and limitations of cloud-based detection—something no other mobile security provider can claim.

Get a free enterprise trial

Interested in trying Zimperium in your Microsoft security environment? Contact us today for mobile device security with protection against network, device, phishing, and malicious app attacks.

The post Mobile security—the 60 percent problem appeared first on Microsoft Security.

Protecting your data and maintaining compliance in a remote work environment

April 6th, 2020 No comments

In this difficult time, remote work is becoming the new normal for many companies around the world. Employees are using tools like Microsoft Teams to collaborate, chat, and connect in new ways to try to keep their businesses moving forward amidst the challenging global health crisis. I sincerely hope you and your families are staying safe and healthy.

I have been talking with many of you about the impact today’s environment is having on your organizations. Business continuity is an imperative, and you must rely on your employees to stay connected and productive outside of the traditional digital borders of business. In doing so, identifying and managing potential risks within the organization is critical to safeguarding your data and intellectual property (IP), while supporting a positive company culture.

Because many of you have been asking, here is some guidance for things you can do to take advantage of these capabilities. I’ll focus a lot of the examples on Teams, but many of these features are relevant across Microsoft 365.

Staying secure and compliant

First, knowing where your data resides while employees are working remotely is a vital question, especially for your risk management-focused departments. Data in Teams is encrypted at rest and in transport, and uses secure real-time protocol for video, audio, and desktop sharing.

There are also several tools that help you remain in control and protect sensitive documents and data in Microsoft 365. For example, you can restrict Teams experiences for guests and people outside of your organization. You can also govern the apps to which each user has access.

In addition, we’ve made sure that the Teams service is compliant: to help you answer questions from your auditors, we publish auditor reports on the Service Trust Portal. And we help our customers keep up with evolving regulations and standards with a robust compliance controls framework, which meets some of the most rigorous industry and countries’ regulations requirements.

Applying data loss prevention in Teams

Data loss prevention (DLP) addresses concerns around sensitive information in messages or documents. Setting up DLP policies in Teams can protect your data and take specific actions when sensitive information is shared. For example, suppose that someone attempts to share a document with guests in a Teams channel or chat, and the document contains sensitive information. If you have a DLP policy defined to prevent this, the document won’t open for those users. Note that in this case, your DLP policy must include SharePoint and OneDrive for the protection to be in place.

Applying sensitivity labeling to protect sensitive data

You can also apply a sensitivity label to important documents and associate it with protection policies and actions like encryption, visual marking, and access controls and be assured that the protection will persist with the document throughout its lifecycle, as it is shared among users who are internal or external to your organization.

You can start by allowing users to manually classify emails and documents by applying sensitivity labels based on their assessment of the content and their interpretation of the organizational guidelines. However, users also forget or inaccurately apply labels, especially in these stressful times, so you need a method that will scale to the vast amount of data you have.

To help you to achieve that scale, we are announcing the public preview of automatic classification with sensitivity labels for documents stored on SharePoint Online and OneDrive for Business, and for emails in transit in Exchange Online. The public preview will begin rolling out over the next week. Like with manual classification, you can now set up sensitivity labels to automatically apply to Office files (e.g., PowerPoint, Excel, Word, etc.) and emails based upon organizational policies. In addition to having users manually label files, you can configure auto classification policies in Microsoft 365 services like SharePoint Online, OneDrive, and Exchange Online. These policies can automatically label files at rest and in motion based on the rules you’ve set. Those classifications also apply when those documents are shared via Teams.

Minimize insider risk

We also know that stressful events contribute to the likelihood of insider risks, such as leakages, IP theft, or data harassment. Insider Risk Management looks at activity from across Microsoft 365, including Teams, to identify potential suspicious activity early.

Communication Compliance, part of the new Insider Risk Management solution set in Microsoft 365, leverages machine learning to quickly identify and take action on code of conduct policy violations in company communications channels, including Teams. Communication Compliance reasons over language used in Teams which may indicate issues related to threats (harm to oneself or others). Detecting this type of language in a timely manner not only minimizes the impact of internal risk, but also can go a long way in supporting employee mental health in uncertain times like this.

Enabling simple retention policies

To comply with your organization’s internal policies, industry regulations, or legal needs, all your company information should be properly governed. That means ensuring that all required information is kept, while the data that’s considered a liability and that you’re no longer required to keep is deleted.

You can set up Teams retention policies for chat and channel messages, and you can apply a Teams retention policy to your entire organization or to specific users and teams. When data is subject to a retention policy, users can continue to work with it because the data is retained in place, in its original location. If a user edits or deletes data that’s subject to the retention policy, a copy is saved to a secure location where it’s retained while the policy is in effect.

All data is retained for compliance reasons and is available for eDiscovery until the retention period expires, after which your policy indicates whether to do nothing or delete the data. With a Teams retention policy, when you delete data, it’s permanently deleted from all storage locations on the Teams service.

Staying productive while minimizing risk

Working remotely helps your employees stay healthy, productive, and connected, and you can keep them productive without increasing risk or compromising compliance. For more guidance around supporting a remote work environment in today’s challenging climate, check out our Remote Work or Remote Work Tech Community sites.

The post Protecting your data and maintaining compliance in a remote work environment appeared first on Microsoft Security.

Turning collaboration and customer engagement up with a strong identity approach

April 6th, 2020 No comments

In these challenging times, it’s even more apparent that modern companies are managing a blended workforce that encompasses not only their full-time staff and customers but also their contractors, consultants, subsidiaries, suppliers, partners, and soon-to-be customers. Balancing friction-less collaboration and highly targeted engagement with privacy and security is not easy, but you don’t have to go it alone.

Now more than ever, reusing rather reinventing is critical. When it comes to connecting to business partners or your customers, consumers, or citizens, you don’t need to create an identity management solution from scratch—you can leverage cloud based identity and access management (IAM) and customer IAM (CIAM) for better engagement with all of your cohorts.

The new world of work

Even before workers transitioned home in large numbers, IT leaders were facing rapidly transitioning work models fueled by an increase in remote working, freelancer exchanges and platforms, and a geographically-distributed workforce—trends that are only accelerated today by the uncommon circumstances imposed by COVID-19. Concurrently, interconnected and complex supply chain bring partners and suppliers directly into the business, where closer coordination is more important than ever. To get an idea for just how “into the business” that means, according to February 2020 Microsoft research, powered by Pulse, IT executives reported that 55 percent of external users outside their organizations belong to other businesses—for example, commercial customers, partners, and suppliers. And 98 percent of those respondents agreed that deepening collaboration and engagement with customers and business partners is how their company will be successful.

The net is that with all these entities logging into multiple corporate networks and segments, for many CISOs, “insider risk” includes a much broader set of actors than just the full-time workforce. And those CISOs are very concerned about insider risk—with 97 percent recently reporting that as their top concern. That’s why a flexible IAM solution is so important right now, because implemented properly, it allows companies to engage and interact effectively with all cohorts while also keeping organizations and data private and secure. Let’s take a closer look at how.

Turning external collaboration up

There are many benefits of using a trusted CIAM solution, here’s a short list of the ones I’ve heard from CISOs are the most valuable.

  • Persistent identities—Almost everyone already has a digital presence and at least one associated ID from Google, Facebook, or Microsoft. Using persistent IDs means that customers and partners can re-use their exiting identity and don’t have to worry about creating an entirely new login and password. This reduces friction and improves security.
  • Data transparency—When people use the same ID across multiple business and organizational systems, both they and the company have a more efficient method for reporting on data use and access. It also means that when a user request that their history be wiped or corrected, they can easily confirm that appropriate action has been taken.
  • Better audit trails—Using those same IDs also supports compliance reporting, audit trails, and forensic investigations. Rather than having to stitch together multiple IDs to determine the path of an incident, like a data exfiltration event, security professionals can follow activity of a single target ID. This also streamlines compliance reporting activity reducing burdens on already overworked staff.
  • Improved security—Allowing partners and customers to bring their own ID also means that robust, enterprise-ready security can be brought along. Advanced technologies like multi-factor authentication (MFA) and conditional access with step-up authentication can be applied to all users, even those that don’t work for large companies with mature identity programs.
  • Enhanced experience—The best security professionals know that technology that makes users’ lives easier is the most effective. All of the above directly impact security, but if customers and partners aren’t excited about using a solution, they’ll go around it. Make sure low friction end-user experiences are supported across varied experiences from artificial intelligence (AI)-led guidance to new product and service recommendations.

In the coming days, we will share more guidance on how to collaborate securely with your business partners and other external users. Learn more about how security professionals can adapt to the increasing usage of collaboration applications and leverage risk-based Conditional Access for real-time deflection of dynamic attacks today. We hope these recommendations will help you enable uninterrupted operations for your organization in these challenging times. Stay safe and be well.

The post Turning collaboration and customer engagement up with a strong identity approach appeared first on Microsoft Security.

Microsoft Defender ATP can help you secure your remote workforce

April 3rd, 2020 No comments

As the number of home-based workers has accelerated in the last few weeks, it’s introduced new challenges. You may want to expand the number and types of devices employees can use to access company resources. You need to support a surge in SaaS usage. And it’s important to adjust security policies to enable productivity from home, while keeping sensitive data secure. As you navigate these changes, turn to us for help. Microsoft Defender Advanced Threat Protection (ATP) customers can expect the following:

  • Coverage for additional devices without requiring additional licenses.
  • Guidance and support services to rapidly expand deployment.
  • Proactive and reactive assistance to help security teams identify, respond to, and remediate threats.

Read Secure your remote workforce with Microsoft Defender ATP for details.

The post Microsoft Defender ATP can help you secure your remote workforce appeared first on Microsoft Security.

Full Operational Shutdown—another cybercrime case from the Microsoft Detection and Response Team

April 2nd, 2020 No comments

Recently, we published our first case report (001: …And Then There Were Six) by the Microsoft Detection and Response Team (DART). We received significant positive response from our customers and colleagues and our team has been getting inquiries asking for more reports. We are glad to share the DART Case Report 002: Full Operational Shutdown.

In the report 002, we cover an actual incident response engagement where a polymorphic malware spread through the entire network of an organization. After a phishing email delivered Emotet, a polymorphic virus that propagates via network shares and legacy protocols, the virus shut down the organization’s core services. The virus avoided detection by antivirus solutions through regular updates from an attacker-controlled command-and-control (C2) infrastructure, and spread through the company’s systems, causing network outages and shutting down essential services for nearly a week. In our report, you can read the details of the attack and how DART responded, review the attack lateral progression diagram and learn best practices from DART experts.

Stay tuned for more DART case reports where you’ll find unique stories from our team’s engagements around the globe. As always, you can reach out to your Microsoft account manager or Premier Support contact for more information on DART services.

 

DART provides the most complete and thorough investigations by leveraging a combination of proprietary tools and Microsoft Security products, close connections with internal Microsoft threat intelligence and product groups, as well as strategic partnerships with security organizations around the world.

The post Full Operational Shutdown—another cybercrime case from the Microsoft Detection and Response Team appeared first on Microsoft Security.

Attack matrix for Kubernetes

April 2nd, 2020 No comments

Kubernetes, the most popular container orchestration system and one of the fastest-growing projects in the history of open source, becomes a significant part of many companies’ compute stack. The flexibility and scalability of containers encourage many developers to move their workloads to Kubernetes. While Kubernetes has many advantages, it also brings new security challenges that should be considered. Therefore, it is crucial to understand the various security risks that exist in containerized environments, and specifically in Kubernetes.

The MITRE ATT&CK® framework is a knowledge base of known tactics and techniques that are involved in cyberattacks. Started with coverage for Windows and Linux, the matrices of MITRE ATT&CK cover the various stages that are involved in cyberattacks (tactics) and elaborate the known methods in each one of them (techniques). Those matrices help organizations understand the attack surface in their environments and make sure they have adequate detections and mitigations to the various risks. MITRE ATT&CK framework tactics include:

  • Initial access
  • Execution
  • Persistence
  • Privilege escalation
  • Defense evasion
  • Credential access
  • Discovery
  • Lateral movement
  • Impact

When we in Azure Security Center started to map the security landscape of Kubernetes, we noticed that although the attack techniques are different than those that target Linux or Windows, the tactics are actually similar. For example, a translation of the first four tactics from OS to container clusters would look like 1. “initial access to the computer” becomes “initial access to the cluster”, 2. “malicious code on the computer” becomes “malicious activity on the containers”, 3. “maintain access to the computer” becomes “maintain access to the cluster”, and 4. “gain higher privileges on the computer” becomes “gain higher privileges in the cluster”.

Therefore, we have created the first Kubernetes attack matrix: an ATT&CK-like matrix comprising the major techniques that are relevant to container orchestration security, with focus on Kubernetes.

Image: Initial Access Execution Persistence Privilege Escalation Defense Evasion Credential Access Discovery Lateral Movement Impact Using Cloud credentials Exec into container Backdoor container Privileged container Clear container logs List K8S secrets Access the K8S API server Access cloud resources Data Destruction Compromised images in registry bash/cmd inside container Writable hostPath mount Cluster-admin binding Delete K8S events Mount service principal Access Kubelet API Container service account Resource Hijacking Kubeconfig file New container Kubernetes CronJob hostPath mount Pod / container name similarity Access container service account Network mapping Cluster internal networking Denial of service Application vulnerability Application exploit (RCE) Access cloud resources Connect from Proxy server Applications credentials in configuration files Access Kubernetes dashboard Applications credentials in configuration files Exposed Dashboard SSH server running inside container Instance Metadata API Writable volume mounts on the host Access Kubernetes dashboard Access tiller endpoint

As can be seen, the matrix contains the 9 tactics listed above. Each one of them contains several techniques that can be used by attackers to achieve different goals. Below are the descriptions of each one of the techniques.

  1. Initial Access

The initial access tactic consists of techniques that are used for gaining access to the resource. In containerized environments, those techniques enable first access to the cluster. This access can be achieved directly via the cluster management layer or, alternatively, by gaining access to a malicious or vulnerable resource that is deployed on the cluster.

  • Using cloud credentials

In cases where the Kubernetes cluster is deployed in a public cloud (e.g., AKS in Azure, GKE in GCP, or EKS in AWS), compromised cloud credential can lead to cluster takeover. Attackers who have access to the cloud account credentials can get access to the cluster’s management layer.

  • Compromised images in registry

Running a compromised image in a cluster can compromise the cluster. Attackers who get access to a private registry can plant their own compromised images in the registry. The latter can then be pulled by a user. In addition, users often use untrusted images from public registries (such as Docker Hub) that may be malicious.

Building images based on untrusted base images can also lead to similar results.

  • Kubeconfig file

The kubeconfig file, also used by kubectl, contains details about Kubernetes clusters including their location and credentials. If the cluster is hosted as a cloud service (such as AKS or GKE), this file is downloaded to the client via cloud commands (e.g., “az aks get-credential” for AKS or “gcloud container clusters get-credentials” for GKE).

If attackers get access to this file, for instance via a compromised client, they can use it for accessing the clusters.

  • Vulnerable application

Running a public-facing vulnerable application in a cluster can enable initial access to the cluster. A container that runs an application that is vulnerable to remote code execution vulnerability (RCE) may be exploited. If service account is mounted to the container (default behavior in Kubernetes), the attacker will be able to send requests to the API server using this service account credentials.

  • Exposed dashboard

The Kubernetes dashboard is a web-based user interface that enables monitoring and managing a Kubernetes cluster. By default, the dashboard exposes an internal endpoint (ClusterIP service). If the dashboard is exposed externally, it can allow unauthenticated remote management of the cluster.

  1. Execution

The execution tactic consists of techniques that are used by attackers to run their code inside a cluster.

  • Exec into container

Attackers who have permissions, can run malicious commands in containers in the cluster using exec command (“kubectl exec”). In this method, attackers can use legitimate images, such as an OS image (e.g., Ubuntu) as a backdoor container, and run their malicious code remotely by using “kubectl exec”.

  • New container

Attackers may attempt to run their code in the cluster by deploying a container. Attackers who have permissions to deploy a pod or a controller in the cluster (such as DaemonSet \ ReplicaSet\ Deployment) can create a new resource for running their code.

  • Application exploit

An application that is deployed in the cluster and is vulnerable to a remote code execution vulnerability, or a vulnerability that eventually allows code execution, enables attackers to run code in the cluster. If service account is mounted to the container (default behavior in Kubernetes), the attacker will be able to send requests to the API server using this service account credentials.

  • SSH server running inside container

SSH server that is running inside a container may be used by attackers. If attackers gain valid credentials to a container, whether by brute force attempts or by other methods (such as phishing), they can use it to get remote access to the container by SSH.

  1. Persistence

The persistence tactic consists of techniques that are used by attackers to keep access to the cluster in case their initial foothold is lost.

  • Backdoor container

Attackers run their malicious code in a container in the cluster. By using the Kubernetes controllers such as DaemonSets or Deployments, attackers can ensure that a constant number of containers run in one, or all, the nodes in the cluster.

  • Writable hostPath mount

hostPath volume mounts a directory or a file from the host to the container. Attackers who have permissions to create a new container in the cluster may create one with a writable hostPath volume and gain persistence on the underlying host. For example, the latter can be achieved by creating a cron job on the host.

  • Kubernetes CronJob

Kubernetes Job is a controller that creates one or more pods and ensures that a specified number of them successfully terminate. Kubernetes Job can be used to run containers that perform finite tasks for batch jobs. Kubernetes CronJob is used to schedule Jobs. Attackers may use Kubernetes CronJob for scheduling execution of malicious code that would run as a container in the cluster.

  1. Privilege escalation

The privilege escalation tactic consists of techniques that are used by attackers to get higher privileges in the environment than those they currently have. In containerized environments, this can include getting access to the node from a container, gaining higher privileges in the cluster, and even getting access to the cloud resources.

  • Privileged container

A privileged container is a container that has all the capabilities of the host machine, which lifts all the limitations regular containers have. Practically, this means that privileged containers can do almost every action that can be performed directly on the host. Attackers who gain access to a privileged container, or have permissions to create a new privileged container (by using the compromised pod’s service account, for example), can get access to the host’s resources.

  • Cluster-admin binding

Role-based access control (RBAC) is a key security feature in Kubernetes. RBAC can restrict the allowed actions of the various identities in the cluster. Cluster-admin is a built-in high privileged role in Kubernetes. Attackers who have permissions to create bindings and cluster-bindings in the cluster can create a binding to the cluster-admin ClusterRole or to other high privileges roles.

  • hostPath mount

hostPath mount can be used by attackers to get access to the underlying host and thus break from the container to the host. (See “3: Writable hostPath mount” for details).

  • Access cloud resources

If the Kubernetes cluster is deployed in the cloud, in some cases attackers can leverage their access to a single container in order to get access to other cloud resources outside the cluster. For example, in AKS each node contains service principal credential that is stored in /etc/kubernetes/azure.json. AKS uses this service principal to create and manage Azure resources that are needed for the cluster operation.

By default, the service principal has contributor permissions in the cluster’s Resource Group. Attackers who get access to this service principal file (by hostPath mount, for example) can use its credentials to access or modify the cloud resources.

  1. Defense evasion

The defense evasion tactic consists of techniques that are used by attackers to avoid detection and hide their activity.

  • Clear container logs

Attackers may delete the application or OS logs on a compromised container in an attempt to prevent detection of their activity.

  • Delete Kubernetes events

A Kubernetes event is a Kubernetes object that logs state changes and failures of the resources in the cluster. Example events are a container creation, an image pull, or a pod scheduling on a node.

Kubernetes events can be very useful for identifying changes that occur in the cluster. Therefore, attackers may want to delete these events (e.g., by using: “kubectl delete events–all”) in an attempt to avoid detection of their activity in the cluster.

  • Pod / container name similarity

Pods that are created by controllers such as Deploymen or DaemonSet have random suffix in their names. Attackers can use this fact and name their backdoor pods as they were created by the existing controllers. For example, an attacker could create a malicious pod named coredns-{random suffix} which would look related to the CoreDNS Deployment.

Also, attackers can deploy their containers in the kube-system namespace where the administrative containers reside.

  • Connect from proxy server

Attackers may use proxy servers to hide their origin IP. Specifically, attackers often use anonymous networks such as TOR for their activity. This can be used for communicating with the applications themselves or with the API server.

  1. Credential access

The credential access tactic consists of techniques that are used by attackers to steal credentials.

In containerized environments, this includes credentials of the running application, identities, secrets stored in the cluster, or cloud credentials.

  • List Kubernetes secrets

A Kubernetes secret is an object that lets users store and manage sensitive information, such as passwords and connection strings in the cluster. Secrets can be consumed by reference in the pod configuration. Attackers who have permissions to retrieve the secrets from the API server (by using the pod service account, for example) can access sensitive information that might include credentials to various services.

  • Mount service principal

When the cluster is deployed in the cloud, in some cases attackers can leverage their access to a container in the cluster to gain cloud credentials. For example, in AKS each node contains service principal credential. (See “4: Access cloud resources” for more details.)

  • Access container service account

Service account (SA) represents an application identity in Kubernetes. By default, an SA is mounted to every created pod in the cluster. Using the SA, containers in the pod can send requests to the Kubernetes API server. Attackers who get access to a pod can access the SA token (located in /var/run/secrets/kubernetes.io/serviceaccount/token) and perform actions in the cluster, according to the SA permissions. If RBAC is not enabled, the SA has unlimited permissions in the cluster. If RBAC is enabled, its permissions are determined by the RoleBindings \ ClusterRoleBindings that are associated with it.

  • Application credentials in configuration files

Developers store secrets in the Kubernetes configuration files, such as environment variables in the pod configuration. Such behavior is commonly seen in clusters that are monitored by Azure Security Center. Attackers who have access to those configurations, by querying the API server or by accessing those files on the developer’s endpoint, can steal the stored secrets and use them.

  1. Discovery

The discovery tactic consists of techniques that are used by attackers to explore the environment to which they gained access. This exploration helps the attackers to perform lateral movement and gain access to additional resources.

  • Access the Kubernetes API server

The Kubernetes API server is the gateway to the cluster. Actions in the cluster are performed by sending various requests to the RESTful API. The status of the cluster, which includes all the components that are deployed on it, can be retrieved by the API server. Attackers may send API requests to probe the cluster and get information about containers, secrets, and other resources in the cluster.

  • Access Kubelet API

Kubelet is the Kubernetes agent that is installed on each node. Kubelet is responsible for the proper execution of pods that are assigned to the node. Kubelet exposes a read-only API service that does not require authentication (TCP port 10255). Attackers with network access to the host (for example, via running code on a compromised container) can send API requests to the Kubelet API. Specifically querying https://[NODE IP]:10255/pods/ retrieves the running pods on the node. https://[NODE IP]:10255/spec/ retrieves information about the node itself, such as CPU and memory consumption.

  • Network mapping

Attackers may try to map the cluster network to get information on the running applications, including scanning for known vulnerabilities. By default, there is no restriction on pods communication in Kubernetes. Therefore, attackers who gain access to a single container, may use it to probe the network.

  • Access Kubernetes dashboard

The Kubernetes dashboard is a web-based UI that is used for monitoring and managing the Kubernetes cluster. The dashboard allows users to perform actions in the cluster using its service account (kubernetes-dashboard) with the permissions that are determined by the binding or cluster-binding for this service account. Attackers who gain access to a container in the cluster, can use its network access to the dashboard pod. Consequently, attackers may retrieve information about the various resources in the cluster using the dashboard’s identity.

  • Instance Metadata API

Cloud providers provide instance metadata service for retrieving information about the virtual machine, such as network configuration, disks, and SSH public keys. This service is accessible to the VMs via a non-routable IP address that can be accessed from within the VM only. Attackers who gain access to a container, may query the metadata API service for getting information about the underlying node. For example, in Azure, the following request would retrieve all the metadata information of an instance: http:///metadata/instance?api-version=2019-06-01

  1. Lateral movement

The lateral movement tactic consists of techniques that are used by attackers to move through the victim’s environment. In containerized environments, this includes gaining access to various resources in the cluster from a given access to one container, gaining access to the underlying node from a container, or gaining access to the cloud environment.

  • Access cloud resources

Attackers may move from a compromised container to the cloud environment. (See “4: Access cloud resources” for details).

  • Container service account

Attackers who gain access to a container in the cluster may use the mounted service account token for sending requests to the API server, and gaining access to additional resources in the cluster. (See “6: Access container service account” for more details.)

  • Cluster internal networking

Kubernetes networking behavior allows traffic between pods in the cluster as a default behavior. Attackers who gain access to a single container may use it for network reachability to another container in the cluster.

  • Applications credentials in configuration files

Developers store secrets in the Kubernetes configuration files, for example, as environment variables in the pod configuration. Using those credentials attackers may gain access to additional resources inside and outside the cluster. (See “6: Application credentials in configuration files” for more details.)

  • Writable volume mounts on the host

Attackers may attempt to gain access to the underlying host from a compromised container. (See “3: Writable hostPath mount” for more details.)

  • Access Kubernetes dashboard

Attackers who have access to the Kubernetes dashboard may manage the cluster resources and also run their code on the various containers in the cluster using the built-in “exec” capability of the dashboard. (See “7: Access Kubernetes dashboard” for more details.)

  • Access tiller endpoint

Helm is a popular package manager for Kubernetes maintained by CNCF. Tiller is the server-side component of Helm up to version 2.

Tiller exposes internal gRPC endpoint in the cluster, listens to port 44134. By default, this endpoint does not require authentication. Attackers may run code on any container that is accessible to the tiller’s service and perform actions in the cluster, using the tiller’s service account, which often has high privileges.

  1. Impact

The Impact tactic consists of techniques that are used by attackers to destroy, abuse, or disrupt the normal behavior of the environment.

  • Data destruction

Attackers may attempt to destroy data and resources in the cluster. This includes deleting deployments, configurations, storage, and compute resources.

  • Resource hijacking

Attackers may abuse a compromised resource for running tasks. A common abuse is to use compromised resources for running digital currency mining. Attackers who have access to a container in the cluster or have permissions to create new containers may use them for such activity.

  • Denial of service

Attackers may attempt to perform a denial of service attack, which makes the service unavailable to the legitimate users. In container clusters, this include attempts to block the availability of the containers themselves, the underlying nodes, or the API server.

Understanding the attack surface of containerized environments is the first step of building security solutions for these environments. The matrix that was presented above can help organizations identify the current gaps in their defenses’ coverage against the different threats that target Kubernetes. Azure Security Center can help you protect your containers environment. Learn more about Azure Security Center’s support for container security.

The post Attack matrix for Kubernetes appeared first on Microsoft Security.

Categories: Azure Security, cybersecurity Tags:

Zero Trust framework to enable remote work

April 2nd, 2020 No comments

Zero Trust Assessment tool now live!

With such a large influx of employees working remotely, many of the traditional network-based security controls are unable to protect the organization. For many organizations, there are two options: route all remote traffic through a strained legacy network architecture, resulting in poor performance and user productivity; or relax restrictions and risk losing protection, control, and visibility. Many organizations are turning to Zero Trust security framework to better support remote work and manage risk.

The Zero Trust security framework helps organizations effectively meet these challenges by gating access to resources individually using granular access policies that take advantage of dynamic user and device risk signals and other telemetry to make more adaptive access decisions.

Support for your Zero Trust journey

Getting started on your Zero Trust journey can be daunting, but we’re here to help. We’ve created the Microsoft Zero Trust Assessment tool to help you determine where you are in your Zero Trust journey. Our assessment tool will help you assess your readiness across identities, devices, apps, infrastructure, network and data, and then provide go-dos and deployment guidance to help you reach key milestones.

 

Every company is at a different stage of their Zero Trust journey. Given the current situation with remote work, maybe you are working to unify your identity management to enable single sign-on (SSO), or you are digging into projects like multi-factor authentication (MFA) or desktop virtualization. Maybe identity and device management are your top priorities right now. Every IT leader needs to define the priorities to enable productivity from anywhere across their organization’s workforce depending on the situation. We understand and we’re here to help.

We recently published Microsoft Zero Trust Maturity Model vision paper detailing the core principles of Zero Trust, along with our maturity model, which breaks down the top level requirements across each of the six foundational elements.

Upcoming, we’ll be publishing deployment guides for each of the foundational elements. Look out for additional guides in the Microsoft Security blog.

Learn more about Zero Trust and Microsoft Security.

Also, bookmark the Security blog to keep up with our expert coverage on security matters. And follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Zero Trust framework to enable remote work appeared first on Microsoft Security.

Microsoft works with healthcare organizations to protect from popular ransomware during COVID-19 crisis: Here’s what to do

April 1st, 2020 No comments

True to form, human-operated ransomware campaigns are always on prowl for any path of least resistance to gain initial access to target organizations. During this time of crisis, as organizations have moved to a remote workforce, ransomware operators have found a practical target: network devices like gateway and virtual private network (VPN) appliances. Unfortunately, one sector that’s particularly exposed to these attacks is healthcare.

As part of intensified monitoring and takedown of threats that exploit the COVID-19 crisis, Microsoft has been putting an emphasis on protecting critical services, especially hospitals. Now more than ever, hospitals need protecting from attacks that can prevent access to critical systems, cause downtime, or steal sensitive information.

Why attackers are using human-operated ransomware

While a wide range of adversaries have been known to exploit vulnerabilities in network devices, more and more human-operated ransomware campaigns are seeing the opportunity and are jumping on the bandwagon. REvil (also known as Sodinokibi) is one of the ransomware campaigns that actively exploit gateway and VPN vulnerabilities to gain a foothold in target organizations. After successful exploitation, attackers steal credentials, elevate their privileges, and move laterally across compromised networks to ensure persistence before installing ransomware or other malware payloads.

Microsoft has been tracking REvil as part of a broader monitoring of human-operated ransomware attacks. Our intel on ransomware campaigns shows an overlap between the malware infrastructure that REvil was observed using last year and the infrastructure used on more recent VPN attacks. This indicates an ongoing trend among attackers to repurpose old tactics, techniques, and procedures (TTPs) for new attacks that take advantage of the current crisis. We haven’t seen technical innovations in these new attacks, only social engineering tactics tailored to prey on people’s fears and urgent need for information. They employ human-operated attack methods to target organizations that are most vulnerable to disruption—orgs that haven’t had time or resources to double-check their security hygiene like installing the latest patches, updating firewalls, and checking the health and privilege levels of users and endpoints—therefore increasing probability of payoff.

Human-operated ransomware attacks are a cut above run-of-the-mill commodity ransomware campaigns. Adversaries behind these attacks exhibit extensive knowledge of systems administration and common network security misconfigurations, which are often lower on the list of “fix now” priorities. Once attackers have infiltrated a network, they perform thorough reconnaissance and adapt privilege escalation and lateral movement activities based on security weaknesses and vulnerable services they discover in the network.

In these attacks, adversaries typically persist on networks undetected, sometimes for months on end, and deploy the ransomware payload at a later time. This type of ransomware is more difficult to remediate because it can be challenging for defenders to go and extensively hunt to find where attackers have established persistence and identify email inboxes, credentials, endpoints, or applications that have been compromised.

We saw something. We said something.

The global crisis requires everyone to step up, especially since attackers seem to be stepping up in exploiting the crisis, too, even as some ransomware groups purportedly committed to spare the healthcare industry. Through Microsoft’s vast network of threat intelligence sources, we identified several dozens of hospitals with vulnerable gateway and VPN appliances in their infrastructure. To help these hospitals, many already inundated with patients, we sent out a first-of-its-kind targeted notification with important information about the vulnerabilities, how attackers can take advantage of them, and a strong recommendation to apply security updates that will protect them from exploits of these particular vulnerabilities and others.

When managing VPN or virtual private server (VPS) infrastructure, it’s critical for organizations to know the current status of related security patches. Microsoft threat intelligence teams have observed multiple nation-state and cybercrime actors targeting unpatched VPN systems for many months. In October 2019, both the National Security Agency (NSA) and National Cyber Security Centre (NCSC) put out alerts on these attacks and encouraged enterprises to patch.

As organizations have shifted to remote work in light of the pandemic, we’re seeing from signals in Microsoft Threat Protection services (Microsoft Defender ATP, Office 365 ATP, and Azure ATP) that the attackers behind the REvil ransomware are actively scanning the internet for vulnerable systems. Attackers have also been observed using the updater features of VPN clients to deploy malware payloads.

Microsoft strongly recommends that all enterprises review VPN infrastructure for updates, as attackers are actively tailoring exploits to take advantage of remote workers.

How to detect, protect, and prevent this type of ransomware

The Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and Department of Commerce National Institute of Standards and Technology (NIST) have published useful guidance on securing VPN/VPS infrastructure.

We understand how stressful and challenging this time is for all of us, defenders included, so here’s what we recommend focusing on immediately to reduce risk from threats that exploit gateways and VPN vulnerabilities:

  • Apply all available security updates for VPN and firewall configurations.
  • Monitor and pay special attention to your remote access infrastructure. Any detections from security products or anomalies found in event logs should be investigated immediately.  In the event of a compromise, ensure that any account used on these devices has a password reset, as the credentials could have been exfiltrated.
  • Turn on attack surface reduction rules, including rules that block credential theft and ransomware activity. To address malicious activity initiated through weaponized Office documents, use rules that block advanced macro activity, executable content, process creation, and process injection initiated by Office applications. To assess the impact of these rules, deploy them in audit mode.
  • Turn on AMSI for Office VBA if you have Office 365.

To help organizations build a stronger security posture against human-operated ransomware, we published a comprehensive report and provided mitigation steps for making networks resistant against these threats and cyberattacks in general. These mitigations include:

  • Harden internet-facing assets and ensure they have the latest security updates. Use threat and vulnerability management to audit these assets regularly for vulnerabilities, misconfigurations, and suspicious activity.
  • Secure Remote Desktop Gateway using solutions like Azure Multi-Factor Authentication (MFA). If you don’t have an MFA gateway, enable network-level authentication (NLA).
  • Practice the principle of least-privilege and maintain credential hygiene. Avoid the use of domain-wide, admin-level service accounts. Enforce strong randomized, just-in-time local administrator passwords. Use tools like LAPS.
  • Monitor for brute-force attempts. Check excessive failed authentication attempts (Windows security event ID 4625).
  • Monitor for clearing of Event Logs, especially the Security Event log and PowerShell Operational logs. Microsoft Defender ATP raises the alert “Event log was cleared” and Windows generates an Event ID 1102 when this occurs.
  • Determine where highly privileged accounts are logging on and exposing credentials. Monitor and investigate logon events (event ID 4624) for logon type attributes. Domain admin accounts and other accounts with high privilege should not be present on workstations.
  • Utilize the Windows Defender Firewall and your network firewall to prevent RPC and SMB communication among endpoints whenever possible. This limits lateral movement as well as other attack activities.

We continue to work with our customers, partners, and the research community to track human-operated ransomware and other trends attackers are using to take advantage of this global crisis.

For more guidance on how to stay protected during this crisis, we will continue to share updates on our blog channels.

 

Microsoft Threat Protection Intelligence Team

Microsoft Threat Intelligence Center (MSTIC)

 

 


Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft Threat Protection tech community.

Read all Microsoft security intelligence blog posts.

Follow us on Twitter @MsftSecIntel.

 

The post Microsoft works with healthcare organizations to protect from popular ransomware during COVID-19 crisis: Here’s what to do appeared first on Microsoft Security.

Welcoming a more diverse workforce into cybersecurity: expanding the pipeline

March 31st, 2020 No comments

Despite much focus on increasing the number of women in cybersecurity, as an industry we are still falling short. For many companies the problem starts with the tech pipeline—there just aren’t enough resumes from qualified female candidates. But I think the real problem is that our definition of qualified is too narrow. It’s so narrow that many women and people from other underrepresented backgrounds don’t identify with cybersecurity. And it limits our ability to evaluate potential defenders. Hiring managers too often reject excellent candidates who don’t check all the boxes. At Fortalice, we do things differently, and as a result nearly 40 percent of our team are women.

During Women in Cybersecurity month, Microsoft is publishing blogs by female cybersecurity leaders who have advice on how to increase the number of women in the field. Last week, Diana Kelley wrote about how to create a culture that helps people of all of backgrounds thrive. In this post, I’ll share four tips for recruiting more women.

It starts with commitment

Increasing diversity requires focus and attention. If you sit back and passively wait for the right resumes to land in your inbox, nothing will change. Much of this starts with the executive team making a concerted effort to take a stand and ask themselves and their organization why they don’t have more women on their teams. Diana’s blog does a great job of walking through some of the cultural aspects that make it hard for diversity to thrive. With the right commitment, you can put structures in place to find the people that you want.

With the coronavirus outbreak around the world, pay attention to your commitment to allow flexible schedules and the flexibility to work from home. Your female employee may be a caregiver to a parent or might be working from home while her children are remote schooling.

Expand the criteria

Cybersecurity is noble work. Every day we defend privacy and protect identities. We use creative problem-solving skills to outwit our adversaries and help people. It’s technical and analytical, yes, but it also takes interpersonal skills. Yet this isn’t how the public envisions cybersecurity. Most imagine a young white guy with poor social skills sitting in the dark, surrounded by more of the same—usually all wearing hoodies. It sounds boring, right? Is it any wonder that so many people opt out?

The stereotype discourages more diverse candidates from seeking us out, but we compound the problem with ridged job requirements. Many hiring managers are leaving women and minority candidates on the sidelines by chasing the same resumes, the same degrees, and the same alphabet soup of certifications. While these are some of the indicators of a successful hire, they aren’t the only ones.

Expand your criteria. The best cybersecurity professionals are insatiable learners and highly skilled problem solvers who think about the user while never underestimating the adversary. Take a chance on people outside cybersecurity or who don’t have a college degree and invest in cross training. Some of my team members started out in a different field. Now they are among the best, most well-rounded defenders in the industry.

Start young

I went to high school at Marine Corps Base Quantico, which mandated a class in computer programming. Thanks to that class I discovered that I have an aptitude and passion for technology. I might not have ended up in cybersecurity if it weren’t for that class. I’m so grateful that the U.S. Marine Corps and the Department of Defense saw the value in us learning new technologies and made this non-negotiable. We need to take this lesson and apply it more broadly. Women who don’t start developing technical skills early are at a great disadvantage when they compete against others who learned to code when they were young.

One way to do this is with training programs for kids. I partnered with another cybersecurity female leader from Cisco and members of FBI InfraGard to found the InfraGard CyberCamp in North Carolina. The program provides security training, security tools training, forensic analysis, and other activities and is hosted at Microsoft’s Charlotte campus. To get the diversity we want, we go directly to the organizations that know girls, kids of color, LGBTQ youth, and economically disadvantaged kids and ask them to apply. The extra effort works; each year, the camp graduates 30 kids from all walks of life—male, female, and economically disadvantaged students included. As more security conferences look to create “hackathons” for middle and high school students, as well as scholarship programs for college students, they must deliberately foster diversity.

Provide a platform for your cybersecurity women

Many young women are looking for role models. They want to feel connected with their coworkers. Send women from your organization to recruiting events on college campus so prospective candidates can get to know your team. Elevate the female leaders at your company with articles or speaking roles at conferences.

As people see more women and other underrepresented groups in cybersecurity, stereotypes will be tested. This will encourage a diverse group of people to apply. We need them! Diversity will make us better at solving the complex problems inherent in cybersecurity.

Learn more

Fortalice started a group called Help a Sister Up on LinkedIn, #hasu. This space is dedicated to advancing women in technology and serves as a rallying point for them and their male advocates. We post job openings, articles, and avenues for discussion. Please join Help a Sister Up.

Theresa Payton is CEO and President of Fortalice—a group of “former White House cyber operatives and national security veterans who have honed our craft protecting people, business, and nations for decades.” Theresa was the first female CIO for the White House and was named One of the 7 Women at the Top of their Game by Meeting Magazines.

The post Welcoming a more diverse workforce into cybersecurity: expanding the pipeline appeared first on Microsoft Security.

Making it easier for your remote workforce to securely access all the apps they need, from anywhere

March 31st, 2020 No comments

Since I published my last blog, Five identity priorities for 2020, COVID-19 has upended the way we work and socialize. Now that physical distancing has become essential to protect everyone’s health, more people than ever are going online to connect and get things done. As we all adjust to a new daily routine, the organizations we work for are turning to technology to help us collaborate and stay productive. In these challenging times, identity can make life simpler, both for people working from home and for IT administrators charged with keeping their environments secure.

In my previous blog, I advised connecting all applications and cloud resources to Azure Active Directory (Azure AD). If you’re like most organizations, your employees use a lot of apps, from popular software-as-a-service (SaaS) apps—including collaboration services like Zoom, Cisco Webex, Workplace from Facebook, or Box—to legacy web and on-premises applications. Making Azure AD the control plane across all your apps helps ensure your employees working from home have secure, seamless access to the tools and resources they need, while protecting those tools and resources from unauthorized access.

Making it easy for remote workers to access the apps they need

When you connect your apps to Azure AD, your employees only need to sign in once to access them, and they only need one set of credentials. To make on-premises web apps available without a cumbersome VPN, you can use Azure AD Application Proxy, while tools from our secure hybrid access partners like can provide access to. To get productive from wherever they are, your employees simply go to the My App Portal, where they can find all the apps they have your permission to use.

Screenshot showing apps in the My Apps portal.

Figure 1: Users can sign in once and access all the apps they need in a central place, the My Apps portal.

Enabling consistent, strong security across all your apps

With Azure AD, enabling productivity doesn’t shortchange security. Once you’ve connected your apps to Azure AD, you can apply custom security policies across your entire digital estate. Since even complex passwords get stolen, we recommend enforcing multi-factor authentication (MFA) for all accounts and applying Conditional Access policies for adaptive granular access controls. For example, when a user signs in, policies can determine whether to allow, limit, or block access based on their location, whether their device is compliant, and which app they’re trying to access.

Additionally, Microsoft Intune App Protection Policies can provide application-level controls and compliance, while maintaining a great user experience on any device. Intune app configuration policies can help keep work data safe by controlling or stopping people from sharing work data outside of trusted apps assigned to them.

Increasing IT efficiency with self-service and automation​

To reduce the burden on IT, Azure AD offers several tools to simplify management. Self-Service Password Reset lets users manage passwords on their own. Pre-integrated applications make it easy to enable single sign-on (SSO) with just a few clicks (Figure 2). Some companies, to help serve their communities. Automated provisioning of user accounts and apps makes onboarding significantly faster, so those new workers can get productive right away. For one customer, Mattress Firm, adding a new employee to their HR system automatically provisions their Azure AD user account and assigns them access to the appropriate applications within four hours.

Screenshot showing apps in the Azure AD Gallery.

Figure 2: Configure your apps for secure, seamless access with just a couple clicks.

Get free assistance connecting your apps to Azure AD

Many of our customers are moving rapidly to enable secure remote work during this current crisis, and we want to make sure you have everything you need. If you have subscriptions to Office 365 or Azure, you can use Azure AD to configure secure SSO for your 10 most critical apps for free. A license for Microsoft 365 gives you full access to Azure AD. For all our customers, we also offer complimentary deployment assistance through our FastTrack program.

As unprecedented numbers of people work remotely, the right tools, including Azure AD, can help keep them both protected and productive. Whatever your circumstances, we’re here to help. You can reach us via Twitter: @AzureAD.

Learn more

Learn how to use Azure AD to connect your workforce to all the apps they need from anywhere.

 

*This offer includes MFA via the Microsoft Authenticator app only.

The post Making it easier for your remote workforce to securely access all the apps they need, from anywhere appeared first on Microsoft Security.

Alternative ways for security professionals and IT to achieve modern security controls in today’s unique remote work scenarios

March 26th, 2020 No comments

With the bulk of end users now working remotely, legacy network architectures that route all remote traffic through a central corporate network are suddenly under enormous strain. The result can be poorer performance, productivity, and user experience. Many organizations are now rethinking their network infrastructure design to address these issues, especially for applications like Microsoft Teams and Office 365. At Microsoft, for example, we adopted split tunneling as part of our VPN strategy. Our customers have asked us for guidance on how to manage security in this changing environment.

An architecture that routes all remote traffic back to the corporate network was originally intended to provide the security team with the following:

  • Prevention of unauthorized access
  • Control of authorized user access
  • Network protections such as Intrusion Detection/Prevention (IDS/IPS) and Distributed Denial of Service (DDoS) mitigation
  • Data loss prevention (DLP)

In this post, we’ll address alternative ways of achieving modern security controls, so security teams can manage risk in a more direct-to-internet network architecture.

Prevention of unauthorized access

Multi-factor authentication (MFA) helps increase authentication assurance. We recommend requiring it for all users. If you are not ready to deploy to all users, consider entering an emergency pilot for higher risk or more targeted users. Learn more about how to use Azure Active Directory (Azure AD) Conditional Access to enforce MFA. You will also want to block legacy authentication protocols that allow users to bypass MFA requirements.

Control of authorized user access

Ensure only registered devices that comply with your organization’s security policies can access your environment, to reduce the risk that would be posed by resident malware or intruders. Learn more about how to use Azure AD Conditional Access to enforce device health requirements. To further increase your level of assurance, you can evaluate user and sign-on risk to block or restrict risky user access. You may also want to prevent your users from accessing other organizations’ instances of the Office 365 applications. If you do this with Azure AD tenant restrictions, only logon traffic needs to traverse the VPN.

Network protections

Some of the protections that you may have traditionally provided by routing traffic back through your corporate network can now be provided by the cloud apps your users are accessing. Office 365, for example, is globally distributed and designed to allow the customer network to route user requests to the closest Office 365 service entry point. Learn more about Office 365 network connectivity principles. We build resiliency into Office 365 to minimize potential disruption. We protect Office 365 and Azure from network attacks like DDoS on behalf of our customers.

With the above controls in place, you may be ready to route remote users’ traffic directly to Office 365. If you still require a VPN link for access to other applications, you can greatly improve your performance and user experience by implementing split tunneling.

We strongly recommend that you review VPN and VPS infrastructure for updates, as attackers are actively tailoring exploits to take advantage of remote workers. Microsoft Threat Intelligence teams have observed multiple nation state and cybercrime actors targeting unpatched VPN systems for many months. In October 2019, both the National Security Agency and National Cyber Security Centre issued alerts on these attacks. The Department of Homeland Security Cybersecurity and Infrastructure Security Agency (CISA) and Department of Commerce National Institute of Standards and Technology (NIST) have published useful guidance on securing VPN/VPS infrastructure.

DLP

To help you prevent the accidental disclosure of sensitive information, Office 365 has a rich set of built-in tools. You can use the built-in DLP capabilities of Teams and SharePoint to detect inappropriately stored or shared sensitive information. If part of your remote work strategy involves a bring-your-own-device (BYOD) policy, you can use Conditional Access App Control to prevent sensitive data from being downloaded to users’ personal devices.

Malware detection

By default, SharePoint Online automatically scans file uploads for known malware. Enable Exchange Online Protection to scan email messages for malware. If your Office 365 subscription includes Office 365 Advanced Threat Protection (ATP), enable it to provide advanced protection against malware. If your organization uses Microsoft Defender ATP for endpoint protection, remember that each user is licensed for up to five company-managed devices.

Additional resources

The post Alternative ways for security professionals and IT to achieve modern security controls in today’s unique remote work scenarios appeared first on Microsoft Security.

Welcoming and retaining diversity in cybersecurity

March 24th, 2020 No comments

I doubt I’d be in the role I am now if leaders at one of my first jobs hadn’t taken an interest in my career. Although I taught myself to code when I was young, I graduated from college with a degree in English Literature and began my post-college career in editorial. I worked my way up to Assistant Editor at a math and science college textbook publisher located in Boston, Massachusetts. I was responsible for acquisitions and training on the software that that the company distributed with its textbooks. The senior editors sent me to a conference in Florida to train the sales team on how to present the software to professors. This is where I met Jennifer. Jennifer headed up the network and IT support for our California parent company, and because we shared a room at the conference hotel, we got to know each other, and she saw me present. This interaction proved pivotal. When the publisher created a new position to support a network of AS/400s, Jennifer talked me into applying—and yes, she did have to talk me into it! Like a lot of young professionals, I was intimidated to take on such a different role. But I’m so glad she was looking out for me. It was the start of my career in technology, which ultimately led me to Microsoft.

My experience is a great example of how individuals and company culture can influence the trajectory of someone’s career. To celebrate Women in Cybersecurity month, Microsoft is exploring tactics to increase diversity in the tech industry. In the first post in the series, Ann Johnson wrote about mentorship. In this post, I share some ideas for cultivating the diverse talent that already work at your company to build a strong and diverse leadership team.

Retention is as important as recruitment

When we talk about the lack of diversity in tech, much of the conversation focuses around hiring. And it’s true that we need to dramatically increase the number of women, non-binary, and people of color that we recruit. But if we want to create more diverse technology teams, we also need to address the talent drain. Too often smart technologists with nontraditional backgrounds drop out of STEM careers. Studies have shown that up to 52 percent of women leave technology fields. This is nearly double the percentage of men who quit tech. And for those who think it’s because women don’t enjoy technology, 80+ percent of women in STEM say they love their work. The problem often comes down to culture. Which means it’s something we can fix! I’ve worked with and managed many neuro-diverse teams and here’s what I’ve seen work.

People aren’t books

One of the most famous pictures of Einstein shows him with his hair in disarray, sticking his tongue out. If you didn’t know he was one of the greatest thinkers in the world, you might assume he wasn’t the fastest electron in the universe. Or what does it say that many of us didn’t discover Katharine Johnson, another brilliant physicist, until 2017 when the movie “Hidden Figures” was released.

Our collective mental model for what an engineer or scientist is supposed to look and act like doesn’t reflect reality. Some people have purple hair, some like to work in yoga pants, some listen to loud music on headphones all day, or have creative face tattoos. And many are women or LGBTQ or people of color or disabled. People’s race, gender, appearance and work styles have no bearing on whether they are a hard worker or a valuable contributor. We know this, but often we don’t realize we’ve made a judgement based on unconscious biases.

How to address: Don’t judge people by their “covers.” This starts by acknowledging that your biases may not be explicit or intentional, but they still exist. Listen to what people say. Evaluate the work they produce. Observe how they collaborate with others. These are the indicators of the value they bring. And keep in mind that people who’ve been conditioned to believe that technology isn’t for them, may not exhibit the level of confidence you expect. It doesn’t mean they can’t do it. They may just need a little more encouragement (thank you, Jennifer!).

Women often leave jobs because they feel stalled in their careers. In one study, 27 percent of U.S. women said they feel stalled and 32 percent were considering quitting in the next year. For a variety of reasons, unconscious bias results in straight white men getting more opportunities on high profile projects, more ideas greenlit, and faster promotions. As a result, women get discouraged, do not feel supported and look for other opportunities. That is why in the previous blog, we focused on mentorship.

How to address: Be a champion for women and other underrepresented groups in your company. My relationship with Jennifer is a great example of this. She took an interest in my career, identified an opportunity and helped me get to the next rung. Our relationship was informal, but you can also create a structured sponsorship program. The goal is to go beyond mentorship and become an advocate for promising women, people of color, and other underrepresented groups. Use your influence to get them the right projects, the right advice, and the right exposure to help them advance their careers.

Nurture unique thinkers

Back when I was a manager at KPMG, we used to try to hire people who “think outside the box.” But the tricky part about hiring out of the box thinkers is that their ideas are, well, outside the box. Organizations often think they want people to shake things up but in practice many are uncomfortable being challenged. This leads them to quickly shut down bold new ideas. When original thinkers don’t feel valued, they take all that innovation and creativity elsewhere.

How to address: Build a culture of inclusion where everyone has a chance to share. Not every idea is great; in my career I’ve had more than my share of bad ones! But you should listen to and consider all opinions—even if they seem a little off the wall. It doesn’t mean you have to move them all forward, but sometimes an idea that sounds outlandish one day starts to make sense after a good night’s sleep. Or take a page from the women in the Obama administration and amplify ideas that have been overlooked.

Respect the hours

Not everyone can commit to a regular eight in the morning to six in the evening work week. Many people care for children, sick spouses, and elderly parents—being a caretaker is a skill in and of itself! In fact, this quality of being a caretaker is something that in most technology roles can be a valued asset. In addition to being a caretaker, others can’t work “regular” weeks because they’re finishing degrees or have other time challenges and commitments.

Varied approaches to time also apply to project milestones. People deal with deadlines differently—some get stressed if the deadline is too close (like me!) and do their work in advance, others need that adrenaline pump and wait until (almost) the last minute to deliver.

How to address: Institute and support flexible work hours, job sharing (two people share the same job, both doing it half-time), or three weeks on/one week off work schedules that enable people to contribute without requiring them to keep the same hours as everyone else. Trust that people can be productive even if they don’t work the same way or at the same time as your typical employee.

To build a diverse, experienced team of leaders, you need an environment that supports and accepts differences of all kinds. Don’t let bias about gender, appearance, or the hours someone can work get in the way of nurturing all those great hires into the next generation of great leaders. Our senior director for our cybersecurity operations team, Kristina, looks for diversity as this helps with managing the diversity of threats. Listen to her thoughts on diversity in our CISO Spotlight Episode 7.

What’s next

For those interested in how to find more diverse talent, next week Theresa Payton will share ideas from her experience recruiting girls, women, and other people with differing backgrounds into technology.

In the meantime, bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. To learn more about our Security solutions visit our website. Or reach out to me on LinkedIn or Twitter.

The post Welcoming and retaining diversity in cybersecurity appeared first on Microsoft Security.

Defending the power grid against supply chain attacks—Part 2: Securing hardware and software

March 23rd, 2020 No comments

Artificial intelligence (AI) and connected devices have fueled digital transformation in the utilities industry. These technological advances promise to reduce costs and increase the efficiency of energy generation, transmission, and distribution. They’ve also created new vulnerabilities. Cybercriminals, nation state actors, and hackers have demonstrated that they are capable of attacking a nation’s power grid through internet-connected devices. As utilities and their suppliers race to modernize our infrastructure, it’s critical that cybersecurity measures are prioritized.

In the first blog in the “Defending the power grid against cyberattacks” series, I walked through how the accelerated adoption of the Internet of Things (IoT) puts utilities and citizens at risk of attack from nation state actors. In this post, I’ll provide guidance for how utilities manufacturers can better protect the connected devices that are deployed in the energy industry.

Protect identities

If your organization supplies the energy industry, you may be targeted by adversaries who want to disrupt the power supply. One way they will try to access your company resources is by stealing or guessing user credentials with tactics like password spray or phishing. According to Verizon’s 2019 Data Breach Investigations Report, 80 percent of breaches are the result of weak or compromised passwords. Attackers target multiple people at a time, but they only need to succeed once to gain access.

Securing your company starts with safeguarding your identities. At the bare minimum, you should apply multi-factor authentication (MFA) to your administrative accounts. A better option is to require all users to authenticate using MFA. MFA requires that users sign in with more than just a password. The second form of authentication can be a one-time code from a mobile device, biometrics, or a secure FIDO2 key, among other options. MFA reduces your risk significantly because it’s much harder for an attacker to compromise two or more authentication factors.

Figure 1: You can use Conditional Access policies to define when someone is promoted to sign in with MFA.

Secure privileged access

In a supply chain attack, adversaries attack your organization to gain access to data and applications that will allow them to tamper with your product or service before it reaches its intended destination. Bad actors want to infiltrate your build environment or the servers that you use to push software updates. To accomplish this, they often target administrator accounts. Securing your administrative accounts is critical to protect your company resources. Here are a few steps you can take to safeguard these accounts:

  • Separate administrative accounts from the accounts that IT professionals use to conduct routine business. While administrators are answering emails or conducting other productivity tasks, they may be targeted by a phishing campaign. You don’t want them signed into a privileged account when this happens.
  • Apply just-in-time privileges to you administrator accounts. Just-in-time privileges require that administrators only sign into a privileged account when they need to perform a specific administrative task. These sign-ins go through an approval process and have a time limit. This will reduce the possibility that someone is unnecessarily signed into an administrative account.

Figure 2: A “blue” path depicts how a standard user account is used for non-privileged access to resources like email and web browsing and day-to-day work. A “red” path shows how privileged access occurs on a hardened device to reduce the risk of phishing and other web and email attacks.

  • Set up privileged access workstations for administrative work. A privileged access workstation provides a dedicated operating system with the strongest security controls for sensitive tasks. This protects these activities and accounts from the internet. To encourage administrators to follow security practices, make sure they have easy access to a standard workstation for other more routine tasks.

Safeguard your build and update environment

Bad actors don’t just target user accounts. They also exploit vulnerabilities in software. Many attacks take advantage of known vulnerabilities for which there are available patches. Keep software and operating systems up-to-date and patched to reduce your risk. Retire any technology that is no longer supported by the publisher and implement mandatory integrity controls to ensure only trusted tools run.

You also need to protect the software that your team writes. A proven and robust Secure Development Lifecycle (SDL) will guide your developers to build software that includes fewer vulnerabilities. Microsoft’s SDL includes 12 practices. For example, Microsoft SDL recommends that security and privacy requirements be defined at the beginning of every project. The guidelines also provide tips for managing the security risk of third-party software, performing threat modeling, and penetration testing, among other recommendations. By building security into the entire software process, the software you release will be more secure and less vulnerable to attack.

Assume breach

My recommendations will reduce your risk, but they won’t eliminate it entirely. To protect your company and customers, you’ll need to adopt an assume breach mindset. It’s not a matter of if you’ll be breached but when. Once you’ve accepted that you can’t prevent all attacks, put processes and tools in place that enable you to detect and respond to an incident as quickly as possible.

Endpoint detection and response solutions, like Microsoft Threat Protection, leverage AI to automate detection and response and correlate threats across domains. When incidents are detected, you will need an appropriate response. The National Institute of Standards and Technology (NIST) provides an incident response guide. You can also learn from Microsoft’s Security Response Center (MSRC), which shared how it developed an incident response plan.

Figure 3: An overview of an incident in Microsoft Threat Protection.

A good communication plan is an important component of a response plan. You will need to let customers know there was an incident and how you plan to address it. As the MSRC notes, “Clear, accurate communication builds confidence in the incident response process, maintains trust with customers, protects your brand, and is essential for fast effective response.”

Centralized IoT device management

In addition to operating a number of generation plants, utilities operate a network of thousands of substations and hundreds of thousands of miles of transmission and distribution lines. This requires them to deploy a large number of IoT devices to safely and efficiently deliver electricity to their customers. To effectively manage this network of IoT devices, suppliers should provide their customers with centralized IoT device management to update firmware, install security updates, and manage accounts and passwords.

Build trust

Protecting critical infrastructure from a destabilizing attack will require collaboration among utilities and suppliers in the industry. Device manufacturers and software publishers have a vital role to play in protecting critical infrastructure. By instituting and maintaining the security practices that I’ve recommended, you can dramatically reduce the risk to your organization and to the power grid.

Stay tuned for the final post in this series, “Part 3: Risk management strategies for the utilities industry,” where I’ll provide recommendations specifically for utilities.

Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Defending the power grid against supply chain attacks—Part 2: Securing hardware and software appeared first on Microsoft Security.

Latest Astaroth living-off-the-land attacks are even more invisible but not less observable

March 23rd, 2020 No comments

Following a short hiatus, Astaroth came back to life in early February sporting significant changes in its attack chain. Astaroth is an info-stealing malware that employs multiple fileless techniques and abuses various legitimate processes to attempt running undetected on compromised machines. The updated attack chain, which we started seeing in late 2019, maintains Astaroth’s complex, multi-component nature and continues its pattern of detection evasion.

Figure 1. Microsoft Defender ATP data showing revival of Astaroth campaigns

Heat map showing Astaroth encounters, with Brazil accounting for majority of encounters

Figure 2. Geographic distribution of Astaroth campaigns this year, with majority of encounters recorded in Brazil

When we first blogged about Astaroth’s methods, we noted how it completely lived off the land to avoid detection: only system tools that are already existing on the machine are ever executed. In fact, it was an unusual spike in activities related to Windows Management Instrumentation Command-line (WMIC) that prompted our investigation and eventually exposed the Astaroth campaign.

Astaroth now completely avoids the use of WMIC and related techniques to bypass existing detections. Instead, the attackers introduced new techniques that make the attack chain even stealthier:

  • Abusing Alternate Data Streams (ADS) to hide malicious payloads
  • Abusing the legitimate process ExtExport.exe, a highly uncommon attack vector, to load the payload

Astaroth exemplifies how living-off-the-land techniques have become standard components of today’s attacks intent on evading security solutions. However, as we mentioned in our previous blog on Astaroth, fileless threats are very much observable. These threats still leave a great deal of memory footprint that can be inspected and blocked as they happen. Next-generation protection and behavioral containment and blocking capabilities in Microsoft Defender Advanced Threat Protection (Microsoft Defender ATP) lead the charge in exposing threats like Astaroth.

In this blog, we’ll share our technical analysis of the revamped Astaroth attack chain and demonstrate how specific Microsoft technologies tackle the multiple advanced components of the attack.

Dismantling the new Astaroth attack chain

The attackers were careful to ensure the updates didn’t make Astaroth easier to detect; on the contrary, the updates only make Astaroth’s activities even more invisible.

One of the most significant updates is the use of Alternate Data Stream (ADS), which Astaroth abuses at several stages to perform various activities. ADS is a file attribute that allows a user to attach data to an existing file. The stream data and its size are not visible in File Explorer, so attacks abuse this feature to hide malicious code in plain sight.

Astaroth 2020 attack chain

Figure 2. Astaroth attack chain 2020

In the case of Astaroth, attackers hide binary data inside the ADS of the file desktop.ini, without changing the file size. By doing this, the attackers create a haven for the payloads, which are read and decrypted on the fly.

Screenshot comparing contents of desktop.ini before and after infection

Figure 3. Desktop.ini before and after infection

The complex attack chain, which involves the use of multiple living-off-the-land binaries (LOLBins), results in the eventual loading of the Astaroth malware directly in memory. When running, Astaroth decrypts plugins that allow it to steal sensitive information, like email passwords and browser passwords.

In the succeeding sections, we describe each step of Astaroth’s attack chain in detail.

Arrival

The attack begins with an email with a message in Portuguese that translates to: “Please find in the link below the STATEMENT #56704/2019 AND LEGAL DECISION, for due purposes”. The email contains a link that points to URL hosting an archive file, Arquivo_PDF_<date>.zip, which contains a LNK file with a similarly misleading name. When clicked, the LNK file runs an obfuscated BAT command line.

Email used in Astaroth campaign

Figure 4. Sample email used in latest Astaroth attacks

The BAT command drops a single-line JavaScript file to the Pictures folder and invokes explorer.exe to run the JavaScript file.

Malware code showing GetObject technique

The dropped one-liner script uses the GetObject technique to fetch and run the much larger main JavaScript directly in memory:

Malware code showing BITSAdmin abuse

BITSAdmin abuse

The main script then invokes multiple instances of BITSAdmin using a benign looking command-line to download multiple binary blobs from a command-and-control (C2) server:

Malware code showing downloaded content showing ADS

The downloaded payloads are encrypted and have the following file names:

  • masihaddajjaldwwn.gif
  • masihaddajjalc.jpg
  • masihaddajjala.jpg
  • masihaddajjalb.jpg
  • masihaddajjaldx.gif
  • masihaddajjalg.gif
  • masihaddajjalgx.gif
  • masihaddajjali.gif
  • masihaddajjalxa.~
  • masihaddajjalxb.~
  • masihaddajjalxc.~
  • masihaddajjal64w.dll
  • masihaddajjal64q.dll
  • masihaddajjal64e.dll

Alternate Data Streams abuse

As mentioned, the new Astaroth attacks use a clever technique of copying downloaded data to the ADS of desktop.ini. For each download, the content is copied to the ADS, and then the original content is deleted. These steps are repeated for all downloaded payloads.

Malware code showing abuse of ADS to run script to find security products

Another way that Astaroth abuses ADS is when it runs a script to find installed security products. A malicious script responsible for enumerating security products is dropped and then copied as an ADS to an empty text file. The execution command-line looks like this:

ExtExport.exe abuse

The main script combines three separately downloaded binary blobs to form the first-stage malware code:

Malware code showing three blobs forming first-stage malware code

The script then uses a LOLBin not previously seen in Astaroth attacks to load the first-stage malware code: ExtExport.exe, which is a legitimate utility shipped as part of Internet Explorer. Attackers can load any DLL by passing an attacker-controlled path to the tool. The tool searches for any DLL with the following file names: mozcrt19.dll, mozsqlite3.dll, or sqlite3.dll. Attackers need only to rename the malicious payload to one of these names, and it is loaded by ExtExport.exe.

Malware code showing ExtExport.exe abuse

Userinit.exe abuse

The newly loaded DLL (mozcrt19.dll, mozsqlite3.dll, or sqlite3.dll) is a proxy that reads three binary ADS streams (desktop.ini:masihaddajjalxa.~, desktop.ini:masihaddajjalxb.~, and desktop.ini:masihaddajjalxc.~) and combines these into a DLL. The newly formed DLL is the second-stage malware code and is loaded in the same process using the reflective DLL loading technique.

The newly loaded DLL is also a proxy that reads and decrypts another ADS stream (desktop.ini:masihaddajjalgx.gif) into a DLL. This DLL is injected into userinit.exe using the process hollowing technique.

The newly loaded DLL inside userinit.exe is again a proxy that reads and decrypts another ADS stream (desktop.ini:masihaddajjalg.gif) into a DLL. This DLL is the malicious info-stealer known as Astaroth and is reflectively loaded inside userinit.exe. Hence, Astaroth never touches the disk and is loaded directly in memory, making it very evasive.

Astaroth payload

When running, the Astaroth payload then reads and decrypts more components from the ADS stream of desktop.ini (desktop.ini:masihaddajjaldwwn.gif, desktop.ini:masihaddajjalc.jpg, desktop.ini:masihaddajjala.jpg, desktop.ini:masihaddajjalb.jpg, and desktop.ini:masihaddajjali.gif).

Some of these components are credential-stealing plugins hidden inside the ADS stream of desktop.ini. Astaroth abuses these plugins to steal information from compromised systems:

  • NirSoft’s MailPassView – an email client password recovery tool
  • NirSoft’s WebBrowserPassView – a web browser password recovery tool

As mentioned, Astaroth also finds installed security products. It then attempts to disable these security products. For Microsoft Defender Antivirus customers, tamper protection prevents such malicious and unauthorized changes to security settings.

Comprehensive, dynamic protection against living-off-the-land, fileless, and other sophisticated threats with Microsoft Threat Protection

Attackers are increasingly turning to living-off-the-land techniques to attempt running undetected for as long as possible on systems. Because these attacks use multiple executables that are native to the system and have legitimate uses, they require a comprehensive, behavior-based approach to detection.

Microsoft Threat Protection combines and orchestrates into a single solution the capabilities of multiple Microsoft security services to coordinate protection, detection, response, and prevention across endpoints, email, identities, and apps.

In the case of Astaroth, Office 365 ATP detects the malware delivery via email. Using detonation-based heuristics and machine learning, Office 365 ATP inspects links and attachments to identify malicious artifacts.

On endpoints, next-generation protection capabilities in Microsoft Defender ATP detect and prevent some components of Astaroth’s new attack chain. Notably, through Antimalware Scan Interface (AMSI), Microsoft Defender ATP can inspect the encrypted malicious scripts used in the initial stages of the attack.

For the more sophisticated sections of the attack chain, behavioral blocking and containment capabilities provide dynamic protection that can stop malicious behaviors and process trees. Behavior-based protections are key to exposing living-off-the-land threats that abuse and hide behind legitimate processes. These protections identify suspicious behavior sequences and advanced attack techniques observed on the client, which are used as triggers to analyze the process tree using real-time machine learning models in the cloud.

Diagram showing preventive and behavior-based blocking & containment solutions against Astaroth

Figure 5. Preventive and behavior-based blocking & containment protections against Astaroth

These behavior-based detections raise alerts in Microsoft Defender Security Center. With behavioral blocking and containment, not only are evasive threats exposed, detected, and stopped; security operations personnel are also notified so they can thoroughly investigate and remediate the root cause.

Figure 6. Sample Microsoft Defender ATP alerts on behavior-based detections of Astaroth’s activities

Microsoft Defender ATP’s EDR capabilities also have very strong coverage of advanced techniques employed by Astaroth, including cross-process migration, code injection, and use of LOLBins.

Figure 7. Sample Microsoft Defender ATP EDR alert and process tree on Astaroth’s behaviors

We expect Astaroth to further develop and increase in complexity, as long-running malware campaigns do. We will continue to watch this evolving threat and ensure that customers are protected from future updates through durable behavior-based protections.

 

 

Hardik Suri

Microsoft Defender ATP Research Team

 

 


Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft Threat Protection and Microsoft Defender ATP tech communities.

Read all Microsoft security intelligence blog posts.

Follow us on Twitter @MsftSecIntel.

The post Latest Astaroth living-off-the-land attacks are even more invisible but not less observable appeared first on Microsoft Security.

Protecting against coronavirus themed phishing attacks

March 20th, 2020 No comments

The world has changed in unprecedented ways in the last several weeks due to the coronavirus pandemic. While it has brought out the best in humanity in many ways, as with any crisis it can also attract the worst in some. Cybercriminals use people’s fear and need for information in phishing attacks to steal sensitive information or spread malware for profit. Even as some criminal groups claim they’ll stop attacking healthcare and nursing homes, the reality is they can’t fully control how malware spreads.

While phishing and other email attacks are indeed happening, the volume of malicious emails mentioning the coronavirus is very small. Still, customers are asking us what Microsoft is doing to help protect them from these types of attacks, and what they can do to better protect themselves. We thought this would be a useful time to recap how our automated detection and signal-sharing works to protect customers (with a specific recent example) as well as share some best practices you can use personally to stay safe from phishing attempts.

What Microsoft is doing

First, 91 percent of all cyberattacks start with email. That’s why the first line of defense is doing everything we can to block malicious emails from reaching you in the first place. A multi-layered defense system that includes machine learning, detonation, and signal-sharing is key in our ability to quickly find and shut down email attacks.

If any of these mechanisms detect a malicious email, URL, or attachment, the message is blocked and does not make its way to your inbox. All attachments and links are detonated (opened in isolated virtual machines). Machine learning, anomaly analyzers, and heuristics are used to detect malicious behavior. Human security analysts continuously evaluate user-submitted reports of suspicious mail to provide additional insights and train machine learning models.

Once a file or URL is identified as malicious, the information is shared with other services such as Microsoft Defender Advanced Threat Protection (ATP) to ensure endpoint detection benefits from email detection, and vice versa.

An interesting example of this in action occurred earlier this month, when an attacker launched a spear-phishing campaign that lasted less than 30 minutes.

Attackers crafted an email designed to look like a legitimate supply chain risk report for food coloring additives with an update based on disruptions due to coronavirus. The attachment, however, was malicious and delivered a sophisticated, multi-layer payload based on the Lokibot trojan (Trojan:Win32/Lokibot.GJ!MTB).

Screenshot of a phishing email about a coronavirus update.

Had this payload been successfully deployed, hackers could have used it to steal credentials for other systems—in this case FTP accounts and passwords—which could then be used for further attacks.

Only 135 customer tenants were targeted, with a spray of 2,047 malicious messages, but no customers were impacted by the attack. The Office 365 ATP detonation service, signal-sharing across services, and human analysts worked together to stop it.

And thanks to signal sharing across services, customers not using a Microsoft email service like Office 365, hosted Exchange, or Outlook.com, but using a Windows PC with Microsoft Defender enabled, were fully protected. When a user attempted to open the malicious attachment from their non-Microsoft email service, Microsoft Defender kicked in, querying its cloud-based machine learning models and found that the attachment was blocked based on a previous Office 365 ATP cloud detection. The attachment was prevented from executing on the PC and the customer was protected.

What you can do

While bad actors are attempting to capitalize on the COVID-19 crisis, they are using the same tactics they always do. You should be especially vigilant now to take steps to protect yourself.

Make sure your devices have the latest security updates installed and an antivirus or anti-malware service. For Windows 10 devices, Microsoft Defender Antivirus is a free built-in service enabled through Settings. Turn on cloud-delivered protection and automatic sample submission to enable artificial intelligence (AI) and machine learning to quickly identify and stop new and unknown threats.

Enable the protection features of your email service. If you have Office 365, you can learn about Exchange Online Protection here and Office 365 ATP here.

Use multi-factor authentication (MFA) on all your accounts. Most online services now provide a way to use your mobile device or other methods to protect your accounts in this way. Here’s information on how to use Microsoft Authenticator and other guidance on this approach.

MFA support is available as part of the Azure Active Directory (Azure AD) Free offering. Learn more here.

Educate yourself, friends, and colleagues on how to recognize phishing attempts and report suspected encounters. Here are some of the tell-tale signs.

  • Spelling and bad grammar. Cybercriminals are not known for their grammar and spelling. Professional companies or organizations usually have an editorial staff to ensure customers get high-quality, professional content. If an email message is fraught with errors, it is likely to be a scam.
  • Suspicious links. If you suspect that an email message is a scam, do not click on any links. One method of testing the legitimacy of a link is to rest your mouse—but not click—over the link to see if the address matches what was typed in the message. In the following example, resting the mouse on the link reveals the real web address in the box with the yellow background. Note that the string of IP address numbers looks nothing like the company’s web address.

  • Suspicious attachments. If you receive an email with an attachment from someone you don’t know, or an email from someone you do know but with an attachment you weren’t expecting, it may be a phishing attempt, so we recommend you do not open any attachments until you have verified their authenticity. Attackers use multiple techniques to try and trick recipients into trusting that an attached file is legitimate.
    • Do not trust the icon of the attachment.
    • Be wary of multiple file extensions, such as “pdf.exe” or “rar.exe” or “txt.hta”.
    • If in doubt, contact the person who sent you the message and ask them to confirm that the email and attachment are legitimate.
  • Threats. These types of emails cause a sense of panic or pressure to get you to respond quickly. For example, it may include a statement like “You must respond by end of day.” Or saying that you might face financial penalties if you don’t respond.
  • Spoofing. Spoofing emails appear to be connected to legitimate websites or companies but take you to phony scam sites or display legitimate-looking pop-up windows.
  • Altered web addresses. A form of spoofing where web addresses that closely resemble the names of well-known companies, but are slightly altered; for example, “www.micorsoft.com” or “www.mircosoft.com”.
  • Incorrect salutation of your name.
  • Mismatches. The link text and the URL are different from one another; or the sender’s name, signature, and URL are different.

If you think you’ve received a phishing email or followed a link in an email that has taken you to a suspicious website, there are few ways to report what you’ve found.

If you think the mail you’ve received is suspicious:

  • Outlook.com. If you receive a suspicious email message that asks for personal information, select the checkbox next to the message in your Outlook inbox. Select the arrow next to Junk, and then point to Phishing scam.
  • Microsoft Office Outlook 2016 and 2019 and Microsoft Office 365. While in the suspicious message, select Report message in the Protection tab on the ribbon, and then select Phishing.

If you’re on a suspicious website:

  • Microsoft Edge. While you’re on a suspicious site, select the More (…) icon > Send feedback > Report Unsafe site. Follow the instructions on the web page that displays to report the website.
  • Internet Explorer. While you’re on a suspicious site, select the gear icon, point to Safety, and then select Report Unsafe Website. Follow the instructions on the web page that displays to report the website.

If you think you have a suspicious file:

  • Submit the file for analysis.

This is just one area where our security teams at Microsoft are working to protect customers and we’ll share more in the coming weeks. For additional information and best practices for staying safe and productive through remote work, community support and education during these challenging times, visit Microsoft’s COVID-19 resources page for the latest information.

The post Protecting against coronavirus themed phishing attacks appeared first on Microsoft Security.

Welcoming more women into cybersecurity: the power of mentorships

March 19th, 2020 No comments

From the way our industry tackles cyber threats, to the language we have developed to describe these attacks, I’ve long been a proponent to challenging traditional schools of thought—traditional cyber-norms—and encouraging our industry to get outside its comfort zones. It’s important to expand our thinking in how we address the evolving threat landscape. That’s why I’m not a big fan of stereotypes; looking at someone and saying they “fit the mold.” Looking at my CV, one would think I wanted to study law, or politics, not become a cybersecurity professional. These biases and unconscious biases shackle our progression. The scale of our industry challenges is too great, and if we don’t push boundaries, we miss out on the insights that differences in race, gender, ethnicity, sexuality, neurology, ability, and degrees can bring.

As we seek to diversify the talent pool, a key focus needs to be on nurturing female talent. Microsoft has hired many women in security, and we will always focus on keeping a diverse workforce. That’s why as we celebrate Women in Cybersecurity Month and International Women’s Day, the security blog will feature a few women cybersecurity leaders who have been implementing some of their great ideas for how to increase the number of women in this critical field. I’ll kick it off the series with some thoughts on how we can build strong mentoring relationships and networks that encourage women to pursue careers in cybersecurity.

There are many women at Microsoft who lead our security efforts. I’m incredibly proud to be among these women, like Joy Chik, Corporate Vice President of Identity, who is pushing the boundaries on how the tech industry is thinking about going passwordless, and Valecia Maclin, General Manager of Security Engineering, who is challenging us to think outside the box when it comes to our security solutions. On my own team, I think of the many accomplishments of  Ping Look, who co-founded Black Hat and now leads our Detection and Response Team (DART), Sian John, MBE, who was recently recognized as one of the top 50 influencers in cybersecurity in the U.K., and Diana Kelley, Microsoft CTO, who tirelessly travels to the globe to share how we are empowering our customers through cybersecurity—just to name a few. It’s important we continue to highlight women like these, including our female cybersecurity professionals at Microsoft who made the Top 100 Cybersecurity list in 2019. The inspiration from their accomplishments goes far beyond our Microsoft campus. These women represent the many Microsoft women in our talented security team. This month, you’ll also hear from some of them in subsequent blog posts on how to keep the diverse talent you already have employed. And to conclude the month, Theresa Payton, CEO at Fortalice Solutions, LLC., and the host of our CISO Spotlight series will share tips from her successful experience recruiting talented women into IT and cybersecurity.

Our cyber teams must be as diverse as the problems we are trying to solve

You’ve heard me say this many times, and I truly believe this: As an industry, we’ve already acknowledged the power of diversity—in artificial intelligence (AI). We have clear evidence that a variety of data across multiple sources and platforms enhances and improves AI and machine learning models. Why wouldn’t we apply that same advantage to our teams? This is one of several reasons why we need to take diversity and inclusion seriously:

  • Diverse teams make better and faster decisions 87 percent of the time compared with all male teams, yet the actual number of women in our field fluctuates between 10 and 20 percent. What ideas have we missed by not including more women?
  • With an estimated shortfall of 3.5 million security professionals by 2021, the current tech talent pipeline needs to expand—urgently.
  • Cyber criminals will continue to exploit the unconscious bias inherent in the industry by understanding and circumventing the homogeneity of our methods. If we are to win the cyber wars through the element of surprise, we need to make our strategy less predictable.

Mentoring networks must start early

Mentorship can be a powerful tool for increasing the number of women in cybersecurity. People select careers that they can imagine themselves doing. This process starts young. Recently a colleague’s pre-teen daughter signed up for an after-school robotics class. When she showed up at the class, only two other girls were in the room. Girls are opting out of STEM before they can (legally) opt into a PG-13 movie. But we can change this. By exposing girls to technology earlier, we can reduce the intimidation factor and get them excited. One group that is doing this is the Security Advisor Alliance. Get involved in organizations like this to reach girls and other underrepresented groups before they decide cybersecurity is not for them.

Building a strong network

Mentoring young people is important, but to solve the diversity challenges, we also need to bring in people who started on a different career path or who don’t have STEM degrees. You simply won’t find the talent you need through the anemic pipeline of college-polished STEM graduates. I recently spoke with Mari Galloway, a senior security architect in the gaming industry and CEO of the Women’s Society of Cyberjutsu (WSC) about this very topic in my podcast. She agreed on the importance of finding a mentor, and being a mentee.

Those seeking to get into cybersecurity need a network that provides the encouragement and constructive feedback that will help them grow. I have mentored several non-technical women who have gone on to have successful roles in cybersecurity. These relationships have been very rewarding for me and my mentees, which is why I advocate that everybody should become a mentor and a mentee.

If you haven’t broken into cybersecurity yet, or if you are in the field and want to grow your career, here are a few tips:

  • Close the skills gap through training and certificate programs offered by organizations like Sans Institute and ISC2. I am especially excited about Girls Go Cyberstart, a program for young people that Microsoft is working on with Sans Institute.
  • Build up your advocate bench with the following types of mentors:
    • Career advocate: Someone who helps you with your career inside your company or the one you want to enter.
    • Coach: Someone outside your organization who brings a different perspective to troubleshooting day-to-day problems.
    • Senior advisor: Someone inside or outside your organization who looks out for the next step in your career.
  • Use social media to engage in online forums, find local events, and reach experts. Several of my mentees use LinkedIn to start the conversation.
  • When you introduce yourself to someone online be clear that you are interested in their cumulative experience not just their job status.

For those already in cybersecurity, be open to those from the outside seeking guidance, especially if they don’t align with traditional expectations of who a cybersecurity professional is.

Mentorship relationships that yield results

A mentorship is only going to be effective if the mentee gets valuable feedback and direction from the relationship. This requires courageous conversations. It’s easy to celebrate a mentee’s visible wins. However, those moments are the result of unseen trench work that consists of course correcting and holding each other accountable to agreed upon actions. Be prepared to give and receive constructive, actionable feedback.

Creating inclusive cultures

More women and diverse talent should be hired in security not only because it is the right thing to do, but because gaining the advantage in fighting cybercrime depends on it. ​Mentorship is one strategy to include girls before they opt out of tech, and to recruit people from non-STEM backgrounds.

What’s next

Watch for Diana Kelley’s blog about how to create a culture that keeps women in the field.

Learn more about Girls Go Cyberstart.

Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity. Or reach out to me on LinkedIn or Twitter.

The post Welcoming more women into cybersecurity: the power of mentorships appeared first on Microsoft Security.

Forrester names Microsoft a Leader in 2020 Enterprise Detection and Response Wave

March 18th, 2020 No comments

I’m proud to announce that Microsoft is positioned as a Leader in The Forrester Wave™: Enterprise Detection and Response, Q1 2020. Among the Leaders in the report, Microsoft received the highest score in the current offering category. Microsoft also received the highest score of all participating vendors in the extended capabilities criteria. We believe Microsoft’s position as a Leader in this Forrester Enterprise Detection and Response Wave is not only a recognition of the value we deliver with our endpoint detection and response capabilities through Microsoft Defender Advanced Threat Protection (ATP), but recognition for our customers for their help in defining a market-leading product they really need and love using.

Microsoft Defender ATP, our endpoint protection solution, received the highest score possible (5 out of 5) in the endpoint telemetry, security analytics, threat hunting, ATT&CK mapping, and response capabilities criteria, as well in the Performance and Planned Enhancements criteria. The endpoint detection and response capabilities built into Microsoft Defender ATP empower defenders to achieve more and focus on remediating the threats that will have the biggest impact to their organization. Our broad and deep optics into the threat landscape and our built-in approach to security make our offerings unique.

The recently announced Microsoft Threat Protection, a solution that expands Microsoft Defender ATP from endpoint detection and response (EDR) to an extended detection and response (XDR) solution by combining our endpoint protection with protection for email and productivity tools (Office ATP), identity (Azure ATP), and cloud applications (Microsoft Cloud App Security), received the highest score of all participating vendors for its extended capabilities. As customers face cross-domain attacks, such as email phishing that leads to endpoint and identity compromise, Microsoft Threat Protection looks across these domains to understand the entire chain of events, identifies affected assets, like users, endpoints, mailboxes, and applications, and auto-heals them back to a safe state.

Microsoft is dedicated to protecting companies from real cyberattacks. We are focused on product excellence, innovation, and cutting-edge technology. The success of our customers is our highest priority, which is why we put such a strong emphasis on product excellence to translate the more than $1 billion a year investment, collaboration with over 100 Microsoft Intelligent Security Association (MISA) partners, and more than 3,500 security professionals into real, cloud-delivered protection for our customers. These partnerships, investments, and continuous innovation have led us to secure this leading spot as a provider that “matters most.”

For us, this latest recognition is a testament to our research and product teams’ ongoing commitment to provide our customers with an effective and comprehensive security solution and adds to a growing list of industry recognition of Microsoft Defender ATP.

This is our first time participating in this Forrester Enterprise Detection and Response Wave and we are truly excited to have been recognized as a Leader. It’s another proud milestone in our endpoint security journey with Microsoft Defender ATP and Microsoft Threat Protection to building an industry-leading endpoint and XDR solution that customers love.

Download this complimentary full report and read the analysis behind Microsoft’s positioning as a Leader.

For more information on our endpoint security platform, or to sign up for a trial, visit our Microsoft Defender ATP page.

 

The Forrester Wave™: Enterprise Endpoint Detection and Response, Q1 2020, Josh Zelonis, March 18, 2020.
This graphic was published by Forrester Research as part of a larger research document and should be evaluated in the context of the entire document. The Forrester document is available upon request from https://reprints.forrester.com/#/assets/2/108/RES146957/reports.

The post Forrester names Microsoft a Leader in 2020 Enterprise Detection and Response Wave appeared first on Microsoft Security.

Secured-core PCs: A brief showcase of chip-to-cloud security against kernel attacks

March 17th, 2020 No comments

Gaining kernel privileges by taking advantage of legitimate but vulnerable kernel drivers has become an established tool of choice for advanced adversaries. Multiple malware attacks, including RobbinHood, Uroburos, Derusbi, GrayFish, and Sauron, and campaigns by the threat actor STRONTIUM, have leveraged driver vulnerabilities (for example, CVE-2008-3431, CVE-2013-3956, CVE-2009-0824, CVE-2010-1592, etc.) to gain kernel privileges and, in some cases, effectively disable security agents on compromised machines.

Defending against these types of threats—whether those that live off the land by using what’s already on the machine or those that bring in vulnerable drivers as part of their attack chain—requires a fresh approach to security, one that combines threat defense on multiple levels: silicon, operating system, and cloud. Microsoft brought this chip-to-cloud approach with Azure Sphere, the integrated security solution for IoT devices and equipment. We brought the same approach to securing endpoint devices through Secured-core PCs.

Secured-core PCs combine virtualization, operating system, and hardware and firmware protection. Along with Microsoft Defender Advanced Threat Protection, Secured-core PCs provide end-to-end protection against advanced threats.

Hardware profile guaranteed to support the latest hardware-backed security features

Microsoft worked internally and externally with OEM partners Lenovo, HP, Dell, Panasonic, Dynabook, and Getac to introduce a new a class of devices, Secured-core PCs. Secured-core PCs address the need for customers to perform the complex decision flow of mapping which security feature (e.g., hypervisor-protected code integrity (HVCI), virtualization-based security (VBS), Windows Defender Credential Guard) are supported by which hardware (e.g., TPM 1.0, 2.0, etc.).

With Secured-core PCs, customers no longer need to make this complex decision; they’re assured that these devices support the latest hardware-backed security features.

Hardware-backed security features enabled by default

Secured-core PCs have the hardware-backed security featured enabled by default, removing the need for customers to test and enable these features, which require a combination of BIOS and OS settings changes.

Because both BIOS settings and OS settings are enabled out of the box with these devices, the burden to enable these features onsite is removed for customers. The following hardware-backed security features are enabled by default on any Secured-core PC:

 

Security promise Technical features
Protect with hardware root of trust TPM 2.0 or higher
TPM support enabled by default
Virtualization-based security (VBS) enabled
Defend against firmware attack Windows Defender System guard enabled
Defend against vulnerable and malicious drivers Hypervisor-protected code integrity (HVCI) enabled
Defend against unverified code execution Arbitrary code generation and control flow hijacking protection [CFG, xFG, CET, ACG, CIG, KDP] enabled
Defend against limited physical access, data attacks Kernel DMA protection enabled
Protect identities and secrets from external threats Credential Guard enabled

While some of these features have previously existed, customers had the burden of (1) choosing the right hardware profile that supported all of these features and (2) enabling these features on their devices. With Secured-core PCs, these hardware-backed security features are assured to work on the hardware and are enabled by default.

Advanced security features: Secure device risk, anti-tampering, driver control, firmware control, supply-chain interdiction, and more

The hardware-backed security features that are enabled by default, along with a combination of Secured-core services, seamlessly integrate with Microsoft Defender ATP, lighting up additional security scenarios and providing unified protection against the entire attack chain.

In this blog, we will showcase how Secured-core PC features deliver strong driver controls that protects against threats that use vulnerable drivers to elevate privilege, using the RobbinHood ransomware as example.

Case study: Secured-core PCs vs. RobbinHood ransomware

RobbinHood ransomware is distributed as a packed executable that contains multiple binaries. One of these files is a Gigabyte driver (GDRV.sys), which has a vulnerability that  could allow elevation of privilege, enabling an adversary to gain kernel privileges. In RobbinHood campaigns, adversaries use these kernel privileges to disable kernel-mode signing to facilitate the loading of an unsigned driver. The unsigned malicious driver is then used to disable security products from the kernel.

RobbinHood is not an isolated threat leveraging a vulnerable driver to achieve elevation of privilege. In the last two years, the Microsoft Defender ATP Research Team has seen a rise in the use of vulnerable drivers by adversaries, ranging from commodity malware to nation-state level attacks. In addition to vulnerable drivers, there are also drivers that are vulnerable by design (also referred to as “wormhole drivers”), which can break the security promise of the platform by opening up direct access to kernel-level arbitrary memory read/write, MSRs.

In our research, we identified over 50 vendors that have published many such wormhole drivers. We actively work with these vendors and determine an action plan to remediate these drivers. In order to further help customers identify these drivers and take necessary measures, we built an automated way in which we can block vulnerable drivers, and that is updated through Windows update. Customers can also manage their own blocklist as outlined in the sections below.

Preventive defenses

Two of the security promises of Secured-core PCs are directly applicable to preventing RobbinHood attacks:

  • Defending against vulnerable and malicious drivers
  • Defending against unverified code execution

Defending against vulnerable and malicious drivers

Secured-core PCs are the latest hardware to provide driver control out of the box, with baseline configuration already set. Driver control is provided by a combination of HVCI & Windows Defender Application Control (WDAC) technologies.

Every driver loaded into the kernel is verified by HVCI before it’s allowed to run. HVCI runs in a hardware-protected execution environment isolated from the kernel space and cannot be tampered with by other code running in the kernel, including drivers.

Driver control uses HVCI & WDAC technologies to perform the following operations:

  1. Validity and memory integrity enforcement at load-time and runtime

HVCI uses hardware-based virtualization and the hypervisor (the same hypervisor also used in Azure) to protect Windows kernel mode processes from injection and execution of malicious or unverified code. The integrity of code that runs in the Windows kernel is validated by HVCI according to the kernel signing policy applied to the device. Additionally, kernel memory pages are never simultaneously writable and executable. This makes Secured-core PCs highly resistant to malicious software attempting to gain code execution in the kernel.

In the case of GDRV.sys, which is the driver used by the RobbinHood malware, if the vulnerable driver is successfully loaded and then exploited, the runtime memory integrity check would protect the critical components. Thus, an attack to change ci!g_CiOptions and nt!g_CiEnabled, would be ineffective, as the kernel ignores changes to the variables coming from the general kernel space. And, as code integrity is enabled by default, the malicious driver RBNL.sys wouldn’t load.

The image below shows an event log from a Secured-core PC showing runtime memory integrity check preventing the CI options from being tampered with by RobbinHood and, subsequently, preventing the malicious driver RBNL.sys from being loaded.

Because runtime memory integrity check is enabled by default on Secured-core PCs, RobbinHood wouldn’t be able to disable code integrity on these machines.

  1. Blocklist check

While the most ideal scenario is for enterprises to set customer-specific allows lists, it can be a complex undertaking. To help customers, HVCI uses a blocklist of drivers that are blocked from loading. This blocklist is supplied in two ways:

    • Microsoft-supplied blocklist

Microsoft threat research teams continuously monitor the threat ecosystem and update the list of drivers that in the Microsoft-supplied blocklist. This blocklist is pushed down to devices via Windows update.

We’ve heard from customers that they’d like to provide a list of drivers that should be on the generic Microsoft-supplied blocklist. We’re working on a new feature that allow customers to submit drivers that they’d like us to review and add to the Microsoft-supplied blocklist.

    • Customer-specific blocklist

We recognize that there are situations where customers want a blocklist specific to their organization. By default, any validly signed driver is accepted, but customers can choose to reduce the list of accepted drivers by choosing only WHQL signed drivers. These are drivers that are submitted to Microsoft for signing and are run through a number of tests before being signed.

Devices can apply a custom code integrity policy that customers can use to define their own specific blocklist. This article has more information on how to create such a customer specific blocklist. Below is an example of a customer-specific blocklist that blocks the vulnerable driver GDRV.sys.

Defending against unverified code execution and kernel data corruption attacks

There are several unverified code execution mitigations built-in to Windows. These are readily available on Secured-core PCs.

The RobbinHood attack utilized the vulnerable GDRV.sys driver to change a crucial variable within the system memory. Although HVCI already protects against the attack on g_CiOptions, other areas of memory may still be susceptible, and we need broader defense against kernel data corruption attacks.

In addition to existing mitigations, Windows is introducing a new feature called Kernel Data Protection (KDP), which provides driver developers and software running in the Windows kernel (and the OS code itself) with the ability to mark some kernel memory containing sensitive information as read-only protected. The memory is protected through the second level address translation (SLAT) tables by the hypervisor, such that no software running in VTL0 have access to the protected memory. KDP does not protect executable pages, as those are already protected with HVCI.

Many kernel components have data that is set only once during boot and remains unchanged for the rest of the boot cycle. The first release of KDP protects the static data sections of a driver. In the future, we’re also planning to provide APIs to dynamically allocate and release protected initialized pool memory.

Secured-core PCs have KDP enabled by default.

Detection defenses

As observed in RobbinHood attacks, once the threat gains kernel-level privilege, the threat turns off system defenses, including the endpoint protection agent. Secured-core PCs provide a monitoring agent that utilizes virtualization-based security and runs in this protected environment.

The monitoring agent performs several functions. The ones relevant for this case study are:

  • Secure anti-tampering for security agents
  • Secure monitoring of Windows

Secure anti-tampering for security agents

This monitoring agent watches for attempts to tamper with the security agents. For Microsoft Defender ATP customers, these are integrated into alerts that are surfaced in Microsoft Defender Security Center.

Secure monitoring of Windows

The agent also monitors several areas of Windows, including checking for kernel exploit behavior that are often used to elevate privileges. In this particular case, the monitoring agent detected a token tampering assertion.

Secured-core PCs have both VBS and this secure monitoring agent turned on by default.

Conclusion

As this case study demonstrates, more and more threats are becoming so advanced that they can bypass software-only based defenses. Secured-core PCs are protected from RobbinHood and similar threats by default.

Customers can also get similar protection on traditional devices as long as they have the necessary hardware and are configured correctly. Specifically, the following features need to be enabled: Secure boot, HVCI (enables VBS), KDP (automatically turned on when VBS is on), KDMA (Thunderbolt only) and Windows Defender System Guard.

With Secured-core PCs, however, customers get a seamless chip to cloud security pattern that starts from a strong hardware root of trust and works with cloud services and Microsoft Defender ATP to aggregate and normalize the alerts from hardware elements to provide end-to-end endpoint security.

Overall improved endpoint protection accrues to the broader Microsoft Threat Protection, which combines and orchestrates into a single solutions the capabilities of Microsoft Defender ATP, Office 365 ATP, Azure ATP, and Microsoft Cloud App Security to provide comprehensive, cross-domain protection for endpoints, email and data, identities, and apps.

 

The post Secured-core PCs: A brief showcase of chip-to-cloud security against kernel attacks appeared first on Microsoft Security.

Security baseline for Microsoft Edge v80

March 17th, 2020 No comments

Microsoft is pleased to announce the enterprise-ready release of the recommended security configuration baseline settings for the next version of Microsoft Edge based on Chromium, version 80. The settings recommended in this baseline are the same as the ones we recommended in version 79, with the additional of one new setting that we have added and that will discuss. We continue to welcome feedback through the Baselines Discussion site.


 


The one addition to this baseline since version 79 is that we have added the recommendation to enforce a new setting “Configure Microsoft Defender SmartScreen to block potentially unwanted apps”.  Potentially Unwanted Apps (PUA) was first introduced with our Microsoft Defender Antivirus (MDAV) baseline as part of Windows 10.  PUA are not considered viruses, malware, or other types of threats, but they might perform actions on endpoints which adversely affect endpoint performance or use (such as adware or other low-reputation applications, you can see more PUA criteria here).  Starting with Microsoft Edge 80, you can now block PUA downloads and associated resource URLs.  By default, PUA is an opt-in setting, meaning a user must deliberately configure this.  Well-managed enterprises should ensure positive control of necessary security settings, and therefore we have enabled this setting as part of the baseline (as we have with the MDAV recommendation).


 


Version 80 of the Chromium-based version of Microsoft Edge has 270 enforceable Computer Configuration policy settings and another 254 User Configuration policy settings. Following our streamlined approach, our recommended baseline configures a grand total of twelve Group Policy settings. You can find full documentation in the download package’s Documentation subdirectory.


 


The baseline package is now available as part of the Security Compliance Toolkit. Like all our baseline packages, the downloadable baseline package includes importable GPOs, a script to apply the GPOs to local policy, a script to import the GPOs into Active Directory Group Policy, and all the recommended settings in spreadsheet form, as Policy Analyzer rules, and as GP Reports.

Categories: Uncategorized Tags: